41 research outputs found

    Towards multimodal brain monitoring in asphyxiated newborns with amplitude-integrated EEG and simultaneous somatosensory evoked potentials

    Get PDF
    Background: Somatosensory evoked potentials (SEPs) offer an additional bedside tool for outcome prediction after perinatal asphyxia. Aims: To assess the reliability of SEPs recorded with bifrontoparietal amplitude-integrated electroencephalography (aEEG) brain monitoring setup for outcome prediction in asphyxiated newborns undergoing therapeutic hypothermia. Study design: Retrospective observational single-center study. Subjects: 27 consecutive asphyxiated fullor near-term newborns (25 under hypothermia) that underwent median nerve aEEG-SEPs as part of their clinical evaluation at the neonatal intensive care unit of Helsinki University Hospital. Outcome measures: aEEG-SEP classification (present, absent or unreliable) was compared to classification of SEPs recorded with a full EEG montage (EEG-SEP), and outcome determined from medical records at approximately 12-months-age. Unfavorable outcome included death, cerebral palsy, or severe epilepsy. Results: The aEEG-SEP and EEG-SEP classifications were concordant in 21 of the 22 newborns with both recordings available. All five newborns with bilaterally absent aEEG-SEPs had absent EEG-SEPs and the four with outcome information available had an unfavorable outcome (one was lost to follow-up). Of the newborns with aEEG-SEPs present, all with follow-up exams available had bilaterally present EEG-SEPs and a favorable outcome (one was lost to follow-up). One newborn with unilaterally absent aEEG-SEP at 25 h of age had bilaterally present EEG-SEPs on the next day, and a favorable outcome. Conclusions: aEEG-SEPs recorded during therapeutic hypothermia on the first postnatal days are reliable for assessing brain injury severity. Adding SEP into routine aEEG brain monitoring offers an additional tool for very early outcome prediction after birth asphyxia.Peer reviewe

    Sub-ppm NO2 Detection through Chipless RFID Sensor Functionalized with Reduced SnO2

    Get PDF
    NO2 is an important environmental pollutant and is harmful to human health even at very low concentrations. In this paper, we propose a novel chipless RFID sensor able to work at room temperature and to detect sub-ppm concentration of NO2 in the environment. The sensor is made of a metallic resonator covered with NO2-sensitive tin oxide and works by monitoring both the frequency and the intensity of the output signal. The experimental measurements show a fast response (a few minutes) but a very slow recovery. The sensor could therefore be used for non-continuous threshold monitoring. However, we also demonstrated that the recovery can be strongly accelerated upon exposure to a UV source. This opens the way to the reuse of the sensor, which can be easily regenerated after prolonged exposure and recycled several times

    Automated pose estimation captures key aspects of General Movements at eight to 17 weeks from conventional videos

    Get PDF
    Aim: General movement assessment requires substantial expertise for accurate visual interpretation. Our aim was to evaluate an automated pose estimation method, using conventional video records, to see if it could capture infant movements using objective biomarkers. Methods: We selected archived videos from 21 infants aged eight to 17 weeks who had taken part in studies at the IRCCS Fondazione Stella Maris (Italy), from 2011 to 2017. Of these, 14 presented with typical low-risk movements, while seven presented with atypical movements and were later diagnosed with cerebral palsy. Skeleton videos were produced using a computational pose estimation model adapted for infants and these were blindly assessed to see whether they contained the information needed for classification by human experts. Movements of skeletal key points were analysed using kinematic metrics to provide a biomarker to distinguish between groups. Results: The visual assessments of the skeleton videos were very accurate, with Cohen's K of 0.90 when compared with the classification of conventional videos. Quantitative analysis showed that arm movements were more variable in infants with typical movements. Conclusion: It was possible to extract automated estimation of movement patterns from conventional video records and convert them to skeleton footage. This could allow quantitative analysis of existing footage.Peer reviewe

    Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury

    Get PDF
    Aim To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). Method This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. Results We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual-level prediction of unilateral CP was seen in the centro-occipital spindles with an overall accuracy of 93%. An empiric cut-off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. Interpretation Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury.Peer reviewe

    Measuring Cot-Side the Effects of Parenteral Nutrition on Preterm Cortical Function

    Get PDF
    Early nutritional compromise after preterm birth is shown to affect long-term neurodevelopment, however, there has been a lack of early functional measures of nutritional effects. Recent progress in computational electroencephalography (EEG) analysis has provided means to measure the early maturation of cortical activity. Our study aimed to explore whether computational metrics of early sequential EEG recordings could reflect early nutritional care measured by energy and macronutrient intake in the first week of life. A higher energy or macronutrient intake was assumed to associate with improved development of the cortical activity. We analyzed multichannel EEG recorded at 32 weeks (32.4 ± 0.7) and 36 weeks (36.6 ± 0.9) of postmenstrual age in a cohort of 28 preterm infants born before 32 weeks of postmenstrual age (range: 24.3–32 weeks). We computed several quantitative EEG measures from epochs of quiet sleep (QS): (i) spectral power; (ii) continuity; (iii) interhemispheric synchrony, as well as (iv) the recently developed estimate of maturational age. Parenteral nutritional intake from day 1 to day 7 was monitored and clinical factors collected. Lower calories and carbohydrates were found to correlate with a higher reduction of spectral amplitude in the delta band. Lower protein amount associated with higher discontinuity. Both higher proteins and lipids intake correlated with a more developmental increase in interhemispheric synchrony as well as with better progress in the estimate of EEG maturational age (EMA). Our study shows that early nutritional balance after preterm birth may influence subsequent maturation of brain activity in a way that can be observed with several intuitively reasoned and transparent computational EEG metrics. Such measures could become early functional biomarkers that hold promise for benchmarking in the future development of therapeutic interventions.Peer reviewe

    Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

    Get PDF
    Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.Peer reviewe

    Cerebral Palsy:Early Markers of Clinical Phenotype and Functional Outcome

    Get PDF
    The Prechtl General Movement Assessment (GMA) has become a cornerstone assessment in early identification of cerebral palsy (CP), particularly during the fidgety movement period at 3-5 months of age. Additionally, assessment of motor repertoire, such as antigravity movements and postural patterns, which form the Motor Optimality Score (MOS), may provide insight into an infant's later motor function. This study aimed to identify early specific markers for ambulation, gross motor function (using the Gross Motor Function Classification System, GMFCS), topography (unilateral, bilateral), and type (spastic, dyskinetic, ataxic, and hypotonic) of CP in a large worldwide cohort of 468 infants. We found that 95% of children with CP did not have fidgety movements, with 100% having non-optimal MOS. GMFCS level was strongly correlated to MOS. An MOS > 14 was most likely associated with GMFCS outcomes I or II, whereas GMFCS outcomes IV or V were hardly ever associated with an MOS > 8. A number of different movement patterns were associated with more severe functional impairment (GMFCS III-V), including atypical arching and persistent cramped-synchronized movements. Asymmetrical segmental movements were strongly associated with unilateral CP. Circular arm movements were associated with dyskinetic CP. This study demonstrated that use of the MOS contributes to understanding later CP prognosis, including early markers for type and severity

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
    corecore