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Summary
Background Electroencephalogram (EEG) monitoring is recommended as routine in newborn neurocritical care to 
facilitate early therapeutic decisions and outcome predictions. EEG’s larger-scale implementation is, however, 
hindered by the shortage of expertise needed for the interpretation of spontaneous cortical activity, the EEG 
background. We developed an automated algorithm that transforms EEG recordings to quantified interpretations of 
EEG background and provides simple intuitive visualisations in patient monitors.

Methods In this method-development and proof-of-concept study, we collected visually classified EEGs from infants 
recovering from birth asphyxia or stroke. We used unsupervised learning methods to explore latent EEG characteristics, 
which guided the supervised training of a deep learning-based classifier. We assessed the classifier performance 
using cross-validation and an external validation dataset. We constructed a novel measure of cortical function, brain 
state of the newborn (BSN), from the novel EEG background classifier and a previously published sleep-state classifier. 
We estimated clinical utility of the BSN by identification of two key items in newborn brain monitoring, the onset of 
continuous cortical activity and sleep-wake cycling, compared with the visual interpretation of the raw EEG signal and 
the amplitude-integrated (aEEG) trend.

Findings We collected 2561 h of EEG from 39 infants (gestational age 35·0–42·1 weeks; postnatal age 0–7 days). The 
external validation dataset included 105 h of EEG from 31 full-term infants. The overall accuracy of the EEG 
background classifier was 92% in the whole cohort (95% CI 91–96; range 85–100 for individual infants). BSN trend 
values were closely related to the onset of continuous EEG activity or sleep-wake cycling, and BSN levels showed 
robust difference between aEEG categories. The temporal evolution of the BSN trends showed early diverging 
trajectories in infants with severely abnormal outcomes.

Interpretation The BSN trend can be implemented in bedside patient monitors as an EEG interpretation that is 
intuitive, transparent, and clinically explainable. A quantitative trend measure of brain function might harmonise 
practices across medical centres, enable wider use of brain monitoring in neurocritical care, and might facilitate 
clinical intervention trials.
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(Lastentautiensäätiö), Aivosäätiö, Sigrid Juselius Foundation, HUS Children’s Hospital, HUS Diagnostic Center, 
National Health and Medical Research Council of Australia.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Long-term electroencephalography (EEG) is routinely 
used for brain monitoring in neonatal intensive care 
units (NICUs).1,2 EEG is the only method capable of 
accurate bedside detection of neonatal seizures and 
monitoring cerebral recovery from brain injury, such as 
hypoxic-ischaemic encephalopathy.3 Monitoring of brain 
state is typically done from assessing hourly evolution of 
spontaneous cortical activity (known as EEG background). 
In infants at high risk, EEG monitoring can facilitate 
early therapeutic decisions, such as starting hypothermia 

treatment, and provides early predictions of long-term 
neurodevelopmental outcomes.

EEG monitoring is limited by insufficient 24-h expert 
interpretation of the EEG signals.2,4 As an intermediate 
solution to facilitate bedside review, clinicians have often 
used time-compressed displays, such as amplitude-
integrated EEG (aEEG3,5,6); however, aEEG can be 
sensitive to confounders7 and still requires substantial 
training for a reliable interpretation. A particular 
challenge in acute bedside care is to objectively assess 
recovery of spontaneous brain activity (EEG background 
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activity),8 which contains significant prognostic infor
mation about both acute and long-term recovery.6,8–12 Most 
importantly, a bedside clinician needs to define the 
latency in hours from a brain injury to the recovery of 
continuous cortical activity or the emergence of sleep-
wake cycling.6,12 The background activity in the EEG 
signal or aEEG trend is classified visually using discrete 
categories. However, several EEG and aEEG background 
classifications are in use5,8 and are characterised by an 
inherent ambiguity reflected by the substantial levels of 
inter-human disagreement.13–15 Therefore, scaling up 
human resources for EEG interpretation cannot offer a 
sound solution for bedside brain monitoring.

An alternative solution for bedside EEG review is an 
automated algorithm, a clinical decision support system16 
that could provide EEG interpretation in bedside 
EEG monitors. Several computational classification 
algorithms have been developed towards this aim.17,18 The 
algorithms generally perform well compared with 
clinician experts,15 with deep learning-based classifiers 
performing somewhat better than the classifiers based 
on heuristic feature engineering.17

Bringing automated analysis algorithms to bedside 
implementations has been impeded by two factors. First, 
existing published algorithms are trained using different 

EEG classification systems, thus impeding their mutual 
comparison or ability to generalise across EEG datasets 
from different medical centres and recording systems.19 
Second, solutions that bring clinical value from such 
technical advance, such as an intuitive and transparent 
visualisation of classifier outputs in bedside 
EEG monitors, are scarce. We aimed to bridge these gaps 
by developing an end-to-end solution that transforms 
EEG recording data to a measure of brain state of the 
newborn (BSN)—a patient-monitor-compatible trend 
display of EEG background activity, which generalises 
across datasets and offers an intuitive, transparent, and 
clinically meaningful interpretation with human-level 
accuracy.

Methods
Study design
The EEG classifier algorithm was trained using a long-
term EEG monitoring dataset with 2561 h of EEG from 
39 newborn infants (figure 1). The EEG was scored by 
experts (appendix p 5) using background categories that 
correlate with both cerebral recovery from injury and 
clinical outcomes.6,12 Inter-rater agreements were 
compared with classifier performance to assess human 
equivalence in accuracy.20 We used an unsupervised 

Research in context

Evidence before this study
Recovery of spontaneous cortical activity during the first hours 
after brain injury, such as birth asphyxia, is the most accurate 
predictor of clinical outcome. Brain recovery after an insult in 
newborn infants at high risk is typically monitored by assessing 
electroencephalography (EEG) background activity, also reflected 
in amplitude-integrated EEG (aEEG). The continuous assessment 
of brain activity facilitates therapeutic decisions and provides 
early predictions of long-term neurodevelopmental outcomes. 
There are worldwide recommendations within the neurocritical 
care concept to do routine long-term brain monitoring with 
scalp-recorded EEG, which requires an EEG review available 
24 h/day for the treating clinician. Lack of such bedside expertise, 
or a remotely available review service, has become a key 
bottleneck in meeting the brain-monitoring needs defined by 
the international guidelines. Several machine learning-based 
automated algorithms have been developed to provide clinician-
like discrete classifications of the EEG background activity. It is 
hoped that automated algorithms might be eventually 
implemented in bedside EEG monitors to serve as clinical 
decision support systems. However, such development is halted 
by the gap in translation from the technically appealing machine 
learning solutions to practically appealing bedside solutions.

Added value of this study
Here, we present an end-to-end solution, from the raw EEG 
signal to an automated EEG interpretation visualised in the 
bedside monitor. The work combines a series of novelties: 

first, we used unsupervised learning for exploring latent EEG 
characteristics to guide in refining the EEG categories to such 
that genuinely exist in the EEG signals. Second, we trained a 
deep learning-based EEG background classifier that performs at 
an accuracy similar to that of the human inter-rater agreement. 
Third, we constructed a monitor-compatible visual trend, brain 
state of the newborn (BSN). BSN offers a holistic and intuitively 
interpretable index of neonatal cortical function between 
0 and 100, including an estimate of its confidence for a 
feedback of BSN quality over time. Fourth, the algorithm 
performance was validated with an external dataset. Fifth, a 
series of proof-of-concept assessments were provided to show 
how well the BSN allows interpretation of the two key features 
of cerebral recovery, the onset of continuous cortical activity 
and the emergence of sleep-wake cycling.

Implications of all the available evidence
The BSN can be directly implemented into any medical patient 
monitor. BSN offers an intuitive, transparent, explainable, and 
quantified interpretation of cerebral recovery at high temporal 
resolution. An algorithmic EEG interpretation helps remove a 
key bottleneck in neurocritical care by providing EEG review 
anytime and everywhere and offers a way to harmonise clinical 
practices by removing the unavoidable ambiguity related to 
human EEG interpretations. Moreover, an objective and 
quantified bedside assessment of the evolving cortical function 
can facilitate clinical research and therapeutic trials by offering 
an important high precision benchmark for early outcomes.

See Online for appendix
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learning method, contrast-predictive coding,21 to analyse 
class separation of latent signal characteristics in 
different time windows, which helped to guide the 
refining of the EEG categories and advised the 
subsequent classifier design. We trained a supervised 
learning method that was based on convolutional neural 
networks, a commonly used deep learning architecture, 
to recognise EEG background activity in 1-min epochs. 
We then combined output of the EEG background 
classifier with sleep-state trend, a deep learning-based 
trend display of the prediction of active versus quiet sleep 
states.22 These together yielded a novel measure, BSN. 
BSN is a trend value that ranges from 0 to 100, containing 
intuitive and transparent information about both cerebral 
recovery and sleep-wake cycling. Finally, we did small-
scale proof-of-concept experiments to assess how well the 
BSN trend allows recognition of the emergence of 
continuous EEG activity or sleep-wake cycling, the 
two key indices in NICU EEG monitoring.6,8,12

EEG datasets and scoring
We collected the EEG recordings for the classifier 
training at a tertiary-level NICU at Helsinki University 
Hospital, Helsinki, Finland, using a four-electrode 
recording configuration, which is common in neonatal 

EEG monitoring (appendix p 4). This dataset was collated 
from previously published clinical cohorts23,24 and jointly 
represents EEG background activity from the most 
severe state, an inactive EEG, to clinically normal cerebral 
activity, a fully continuous EEG.

We assessed the generalisation of the classifier using 
an external, publicly available dataset of 105 multi-channel 
EEG files (each 1-h duration, recorded in NICU from 
31 newborn infants with hypoxic-ischaemic encephalo
pathy at Cork University Maternity Hospital, Cork, 
Ireland.25 Processing of EEG signals was the same as 
described for the training data.

The EEG recording system was the same for all data 
(NicoletOne [Cardinal Healthcare/Natus, WI, USA]). The 
training dataset included frontal and parietal electrodes 
(F3, F4, P3, and P4) and the external validation dataset 
included frontal and central electrodes (F3, F4, C3, and C4); 
this minor difference in electrodes was considered to be 
beneficial for testing robustness of the algorithms.

To train a classifier for discrete EEG background 
scores, we used consensus expert scores from a 
four-category scoring system that ranges from an 
inactive EEG to a recovered, continuous EEG with  
normal sleep-wake cycling.8 EEG scoring was done by 
board-certified experts PN, VM and SV, and a background 

Figure 1: Study design
Arrows indicate the directions of data or information flow between study components. The middle graph depicts an example of BSN trend over 4 days in an infant, 
showing a rapid first day recovery from inactive (near zero) to a range of continuous brain activity, and the gradual emergence of rhythmic sleep-state fluctuations 
towards the end of the second day. BSN=brain state of the newborn. EEG=electroencephalogram. SST=sleep-state trend.
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category was assigned to each hour of EEG recording. 
Individual expert scores were used to compare classifier 
performance with human inter-rater agreement. We 
refined the annotations as advised by the unsupervised 
learning method analysing score separation (appendix 
p 5). We also scored the external validation dataset using 
a four-category scoring system,11 representing clinically 

similar categories with somewhat different descriptions 
(appendix p 5).

Construction of the EEG background classifier
To assess the separation between EEG background scores 
at the desired time resolution, we first used an un
supervised learning method, contrast-predictive coding21 
(appendix p 7). This analysis confirmed, as expected, less 
separation between categories representing continuous 
EEG activity with versus without sleep-wake cycling 
when analysing any time window between 1 and 10 min 
(appendix pp 9–10); therefore, these categories were 
combined. We then trained the classifier with 1-min 
window length to improve temporal resolution of the 
final solution.

Next, we did supervised training with consensus scores 
using a deep learning-based classifier (appendix p 7) that 
was based on convolutional neural networks. The final 
network architecture was adapted from a previous study22 
and optimised via an iterative process that emphasised 
accepting a single-channel EEG as input. Thus, the output 
of the classifier is the probability of EEG classes computed 
from 1-min epochs of single-channel EEG data.

Construction of the BSN index
Visualising the algorithmic output in bedside monitors 
is essential for its clinical value, and trends have long 
been used to display vital signs or EEG characteristics, 
such as aEEG,3,5,6 seizure detection,26,27 and sleep stages.22 
We constructed an intuitive BSN trend that takes 
probabilities of all background grades for each minute 
of EEG recording and combines these probabilities 
with a sleep-state classifier. A pilot visualisation of this 
kind was well received by clinicians.15 The result is 
BSN, which is a continuous scale for EEG background 
activity. In the BSN scale, 0 corresponds to an inactive 
EEG, and the range up to 100 represents a gradual 
improvement through burst suppression, various 
degrees of declining discontinuity, until a fully 
continuous EEG that is typically seen in active sleep or 

Figure 2: Comparison of BSN output with aEEG trends and expert scores in 
three typical cases of clinical monitoring
(A) 5 days of EEG monitoring in an infant recovering from birth asphyxia, 
showing initially inactive EEG and a gradual emergence of continuity towards 
the end of the third day. (B) 3 days of EEG monitoring in an infant recovering 
from birth asphyxia, showing initially discontinuous EEG with emerging sleep-
wake cycling during the second day. (C) 24 h of EEG monitoring in an infant 
during recovery from stroke. The BSN trend indicates that the EEG background 
activity is continuous with sleep-wake cycling, which was also confirmed in the 
normal EEG. In all three examples, the aEEG trend is depicted for the biparietal 
(P3–P4) derivation. The corresponding BSN trend is depicted with a solid line 
and the shadow around the BSN line shows the classifier uncertainty to provide 
the clinician with an index of classifier quality. The uncertainty is quantified by 
the distribution of the probability outputs of the classifier. The experts’ scores of 
raw EEG signals are shown for comparison. The conventional aEEG views with 
4 h per window of these example recordings are shown in the 
appendix (pp 18–32). aEEG=amplitude-integrated EEG. BSN=brain state of the 
newborn. EEG=electroencephalography.
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wake states (appendix p 13). Notably, this combination 
of classifiers also allows monitoring of sleep-state 
fluctuations.

Moreover, BSN can be visualised as a continuous signal 
trend accompanied with shading around the trend to 
indicate the classifier’s confidence on the given 
BSN value. The shading depicts the centres of classifier 
output probability mass left above and below the BSN 
trend (figures 1, 2; appendix pp 13–14). Visualising 
confidence aims to facilitate transparency and quality 
assessment, which might be essential for the bedside 
clinician using a clinical decision support system.16

Testing classifier performance
Classifier performance was estimated first by 
leave-one-subject-out cross-validation within the full 
training dataset (2561 h; 987–7800 epochs per infant) 
against consensus expert scorings using five performance 
metrics: confusion matrices, accuracy, unweighted 
F1 score (arithmetic mean of all per-class F1 scores), 
precision (positive predictive value) and Cohen’s linearly 
weighted κ. We assessed generalisation with the same 
metrics computed from the external validation dataset. 
These measures reflect group-level results; however, 
clinical utility of the solution depends on reliability at the 
individual level, therefore we also computed performance 
metrics for each individual (appendix p 11). Additionally, 
we assessed the equivalence of the classifier to a human 
expert by comparing the agreement between classifier 
and human experts with the inter-rater agreement 
between two human experts.

Clinical proof-of-concept validation
A key advance in the BSN trend is the continuous value 
that allows temporally accurate tracking of cerebral 
recovery as well as fluctuation of vigilance states. Clinical 
validation of BSN is, however, challenged by a lack of 
ground truth with comparable fidelity because clinical 
conventions have been based on coarse, discrete 
EEG categories. Hence, there is no ground truth measure 
available for benchmarking BSN in cerebral function 
assessment. As an indirect way to provide proof-of-
concept clinical assessment for the potential information 
value of the BSN trend, we did four small-scale 
experiments. Clinical experts annotated EEG recordings 
(PN [E1] and SV [E3]) or aEEG trends (LH-W [E4]), and 
BSN signals (E1 and E3). Two experts (E1 and E3) have 
over 15 years’ experience in clinical reviewing of neonatal 
EEG records together with aEEG review, and 
one expert (E4) is a pioneer in developing existing aEEG 
paradigms. The filenames were randomised and the 
experts annotated them independently.

For the first experiment, we studied the range of 
BSN values at the time when human experts indicated an 
onset of continuous EEG or emergence of sleep-wake 
cycling. In the second experiment, we compared 
BSN levels with the well established key aEEG categories: 

inactive, burst suppression, and continuous normal 
voltage.5,6 The aEEG categories were identified from 
ten randomly selected timepoints in each infant and 
were compared with the mean BSN levels during that 
hour. In the third experiment, we compared how well the 
BSN versus EEG can be used for identifying the postnatal 
age at which the cortical (EEG) activity becomes 
continuous activity or when sleep-wake cycling emerges. 
E1 and E3 defined these timepoints from the randomised 
BSN trends without knowing the corresponding EEG. 
Fourth, the full time courses of BSN trends were 
compared with the clinical outcome available in 
25 infants in the training dataset.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, writing 
of the report, or the decision to submit for publication.

Results
Comparison of the EEG background classifier outputs 
with the human experts’ consensus score shows a high 
agreement, with overall accuracy ranging from 
87·7% to 92·1% between EEG derivations (figure 3A; 
appendix pp 11–12). Combining classifier results from 
multiple EEG channels led to a minor but expected 
improvement in the classifier performance (figure 3B; 
appendix pp 11–12), and the accuracy was similar across 
the range of gestational ages (35·0–42·1 weeks; 
appendix p 11).

Closer inspection of the confusion matrix showed only 
a low (2–15%) confusion between neighbouring cate
gories, and a negligible confusion (<1%) with categories 
further away from the target (figure 3B). Classifier 
accuracy was robust to individual variations, with all 
infants in our training dataset showing a clinically useful 
level of accuracy greater than 85% (appendix p 11).

Figure 3: Performance of the EEG background classifier
(A) Performance comparison between single EEG derivations (blue lines) and the output after post-processing 
(results from the combined channels shown in the middle). (B) Confusion matrix of the EEG classifier on the y-axis 
and the expert scores on the x-axis. The percentages (and corresponding colours) denote the recall value of each 
category. The integer values denote the number of 1-min segments. EEG=electroencephalogram. 
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We also compared the classifier’s performance with 
human-to-human inter-rater agreement (appendix p 10) 
in distinguishing between three EEG background 
scores. The κ level between two human experts (κ=0·83 
for E1 vs E2) was similar to the κ levels between 
classifier and human experts (κ=0·73 [minute level] 
and κ=0·79 [hour level] for E1 vs classifier; κ=0·77 

[minute level] and κ=0·84 [hour level] for E2 vs 
classifier; appendix p 10). This finding suggests perfor
mance equivalent to near-human level—ie, a human 
expert could be replaced by the classifier without major 
loss of agreement.

We tested classifier generalisation using an external 
dataset from a different centre using a slightly different 

Figure 4: Clinical proof-of-concept validation experiments
(A) Comparison of BSN levels at the time when human experts defined the onset of continuous cortical activity. (B) Comparison of BSN levels at the time when 
human experts defined the onset of sleep-wake cycling. (C) Comparison of BSN levels during three different aEEG categories. (D) Bland-Altman analysis of the 
differences in time when human experts defined continuous EEG onset on the basis of the EEG signal versus BSN trend. Only those points are shown where EEG 
recovered from discontinuous to continuous during the inspection time (E1 n=22 and E3 n=23). The grey zone depicts limits of agreement (–6·6 to 7·8 h). 
(E) Comparison of the BSN values and EEG categories in the external validation dataset. Note the clear separation between EEG categories, whereas the two middle 
scores also show substantial variation across the BSN scale. The dots represent average BSN values of the given EEG hour, while the histograms show the distribution 
of BSN values for all minutes within these hours. All minute-wise BSN values are shown in the appendix (p 15). The BSN values are depicted with corresponding 
colours to allow an easier comparison between figures. (F) Full time courses of the BSN trends in individual infants during the first 4 postnatal days. The trends are 
colour coded according to clinical outcomes and smoothed using a median filter with 1-h window size. Note the clear separation between infants with severe versus 
other outcomes during the second day of life. aEEG=amplitude-integrated EEG. BSN=brain state of the newborn. E1–4=expert 1–4. EEG=electroencephalography.
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recording setting and scoring system. Despite these 
differences, the overall accuracy in classification was 88·0% 
(weighted Cohen’s κ=0·72; range 0·61–1·00 for individual 
infants) with little confusion between categories, 
suggesting a good generalisation (appendix p 12).

The overall cerebral recovery from inactive to fully 
continuous activity can be readily observed over multiple 
days with no previous training in BSN interpretation 
(figure 2A). Likewise, a gradual emergence of sleep-wake 
cycling over 3 days can be easily observed in an infant 
with gradual recovery from birth asphyxia (figure 2B). 
Finally, an example from an infant monitored for stroke 
(figure 2C) shows how the overall background stayed 
clearly higher than in the infants with hypoxic-ischaemic 
encephalopathy (figure 2B), and also exhibits clear 
rhythmicity in the sleep states.

In the first proof-of-concept experiment, we assessed 
the use of BSN trend in monitoring key indicators of 
brain recovery from injury (figures 4A, B). The onset of 
continuous EEG or emergence of sleep-wake cycling 
showed a high inter-rater agreement between experts 
(appendix p 16).

In the second experiment, we compared BSN values 
with well established aEEG background categories28 to 
search for an easy transfer from an aEEG-based review to a 
BSN-based review. We found a clear separation in 
BSN levels according to aEEG categories: an inactive aEEG 
corresponded to a BSN of 0–33 (median 14·8; 95% CI  
12·8–18·4), burst suppression corresponded to a BSN of 
27–61 (41·8; 38·4–43·4); and a continuous normal voltage 
aEEG corresponded to a BSN of 61–91 (75·8; 70·4–73·6). 
Notably, these ranges were bounded by the scores 1–2, 
3, and 4 that were only available for this experiment. 
Higher values with a BSN of greater than 90 were often 
observed in the more normal appearing EEG (figure 2C).

In the third experiment, we compared the BSN with 
the aEEG for identifying the postnatal age when 
background activity becomes continuous or shows sleep-
wake cycling. The mean difference between the BSN and 
the EEG in defining onset of continuous activity was 1 h 
(of 27 neonates, E1 did not find onset of continuous EEG 
in five neonates and E3 did not find onset of continuous 
EEG in four neonates; appendix p 4). We found no 
systematic bias (mean bias 0·6 h [95% CI –0·5 to 1·7]), 
suggesting that BSN reliably indicated the onset of 
continuous EEG activity (figure 4D). The emergence of 
sleep-wake cycling, however, was more challenging to 
detect (appendix p 15). We found only a minimal 
systematic bias between aEEG or EEG versus BSN 
readings (mean bias 5·5 h [1·5 to 9·4). However, limits of 
agreement in the Bland-Altman analysis were wider 
(appendix p 16) because of the inherent ambiguity of 
sleep-wake cycling onset detection, seen as larger 
variance between experts in both reading the EEG or 
aEEG and the BSN signals (appendix p 15).

In the external dataset, BSN values were robustly 
different between EEG background categories (figure 4E). 

When the BSN values were computed for every minute 
of EEG and compared to the hourly EEG category, we 
found substantial variation in the BSN levels, reflecting 
the well known temporal dynamics in cortical activity 
(appendix p 15).

Finally, we compared the continuous BSN time courses 
of individual infants during the first 4 postnatal days with 
their later clinical outcomes. A clear BSN trend 
separation between infants with severe (cerebral palsy or 
death) versus other outcomes became apparent during 
the first 2 days of life and remained throughout the 
observation period (figure 4F).

Discussion
We showed that an automated review of neonatal 
EEG monitoring is possible using a visual display of an 
algorithmic EEG interpretation, such as BSN. The 
present findings show that BSN allows detection of the 
onset of continuous EEG activity and sleep-wake cycling, 
the two key parameters in newborn neuromonitoring.6,12 
We also showed that the results generalise to an external 
validation dataset, and the evolution of an individual’s 
BSN levels correlates with clinical outcomes.

Previous studies have presented several algorithmic 
solutions for classifying discrete EEG classes using 
machine learning-based methods.17,18,29 The classification 
performance of these solutions is generally similar to 
that of our present work; however, a direct comparison is 
impeded by several differences that revolve around the 
clinical benchmark used for both the training and the 
testing phase. First, studies from different centres use 
somewhat different EEG scoring systems and little or no 
information is available on these systems’ comparability 
or ambiguity, which could be measured by inter-rater 
agreement.20 Second, the EEG classifiers typically 
combine information from multiple EEG channels,17,18 an 
approach which is often chosen to improve classifier 
performance; however, classifiers based on multi-
channel data have only limited clinical utility because the 
newborn EEG is typically recorded with only a few 
channels, many of which might need rejection because 
of various artifacts.5,6 Third, using even 1-h long epochs 
for background classifications is common to improve 
classifier stability at the cost of ignoring the well known 
and clinically meaningful temporal dynamics in the 
brain states of a critically ill patient.18 Here, we present an 
EEG background classifier that shows an accuracy 
similar to that of previous studies and human experts, 
and we show that this accuracy is achievable even from a 
few minutes of individual EEG signals.

In clinical practice, clinical observations such as EEG 
assessment are often categorised into discrete classes. 
Such an approach is understandable because of the 
perceptual limits of a human observer; however, states in 
brain activity, or the EEG signal thereof, represent a full 
continuum without discrete switches between categories, 
which is clear to the bedside clinicians who observe 
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gradual brain recoveries through the whole spectrum of 
states.6,8–12 Use of discrete categories leads to substantial 
ambiguity at category boundaries, which is repeatedly 
shown as substantial inter-rater disagreement in EEG 
classifications.13–15 Classifying different kinds of discon
tinuity is a prime example of the challenge: depending 
on the context, the graphologically similar EEG wave
forms might reflect a wide range of conditions from a 
severe cerebral compromise in burst suppression to an 
ongoing cerebral recovery after injury, or a physiological 
discontinuity related to prematurity or quiet sleep. In the 
aEEG practice, some of this ambiguity has been overcome 
by recognising a discontinuous category with and with
out burst suppression.28 Here, we solved this multi
dimensional challenge by visualising the output of the 
multi-class EEG classifier using a continuous BSN 
measure. The BSN intentionally avoids a discrete 
categorisation, yet our proof-of-concept validation studies 
suggest that the BSN values are correlated with the 
conventional EEG categories to support transparency 
and explainability.30

For an easier bedside implementation, the BSN trend 
was designed to resemble the common trends in the vital 
sign monitors, or the widely known aEEG trend in existing 
EEG monitors. Although BSN and aEEG trends look 
somewhat similar, essential differences exist. First, aEEG 
is a straightforward measure of signal amplitude, but BSN 
is an interpretation of many EEG signal characteristics 
that might readily escape visual recognition of EEG 
waveforms.15 Therefore, BSN might represent far more 
clinical information content while being less sensitive to 
commonplace amplitude-based artifacts. Second, the BSN 
trend has an estimate of confidence; intuitively, the BSN 
trend indicates to the bedside clinician the level of trust at 
each point in time, providing essential information about 
monitoring quality. Third, whereas aEEG still requires 
training and remains a subjective assessment of discrete 
aEEG categories with substantial ambiguity,5,6,14 the BSN 
trend provides an objective measure with high temporal 
resolution to support quantitative comparison over time 
and across centres.

Our work has some limitations. The background 
classifier could be trained with much larger datasets to 
possibly improve classifier performance. Larger datasets 
from more international study centres are needed to fully 
validate the accuracy of the classifier solution in different 
user scenarios. However, the BSN trend combines 
information from the EEG background classifier and the 
sleep-state classifier; thus, ultimate clinical validation of 
BSN cannot be inferred directly from metrics of classifier 
performance. Our clinical validation experiments can 
only be considered as proof of principle because of the 
small sample size and exploratory nature. Prospective 
studies with external datasets are needed to validate the 
true clinical feasibility and utility of the present solution. 
Also, our background classifier was not trained on 
preterm infants, or to recognise focal details, such as 

hemispheric asymmetry or abnormal waveforms which 
require conventional multi-channel recordings.8,9,11,12 
Future studies among clinical bedside users are needed 
to optimise visualisation of the BSN, and to assess the 
need for presenting sleep state as a complementary trend 
(appendix p 14). Finally, this work does not assess how 
BSN performs in the presence of seizures, which might 
cover a substantial proportion of newborn EEG records 
in  infants treated in NICUs.26,27 In neonates with 
suspected seizures, we propose using an automated 
seizure detector before computing BSN, a solution that is 
already implemented in our openly available cloud 
computation server (appendix p 17).

BSN is designed to give a numerical measure with a 
quantitative meaning without an explicit categorical 
interpretation of the underlying EEG signal. Studies have 
emphasised and cautioned about explainability of 
machine learning solutions as a shortcut to clinical 
validation.30 We suggest that a genuine clinical utility of 
BSN should not be validated by direct comparison with 
existing discrete EEG interpretations; the utility and 
clinical deployment of a BSN-based EEG interpretation 
needs rigorous and thorough validation in various real-
world scenarios, including prospective validation studies 
that include BSN-based treatment decisions.27 This is 
possible through the open access to BSN trend via 
computational cloud service (appendix p 17), which is 
hoped to expedite clinical validation work and enable 
direct comparison with other solutions. Taken together, 
BSN overcomes many of the key bottlenecks in the 
routine and clinical trial use of neonatal EEG. When 
combined with automated seizure detection26,27 BSN 
could become a key component of future clinical decision 
support systems in neonatal neurocritical care.
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