14 research outputs found

    Draft Genome Sequence of Chromate-Resistant and Biofilm-Producing Strain Pseudomonas alcaliphila 34

    Get PDF
    We report the draft genome sequence of Pseudomonas alcaliphila 34, a Cr(VI)-hyperresistant and biofilm-producing bacterium that might be used for the bioremediation of chromate-polluted soils. The genome sequence might be helpful in exploring the mechanisms involved in chromium resistance and biofilm formation

    Filling gaps in PPAR-alpha signaling through comparative nutrigenomics analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The application of high-throughput genomic tools in nutrition research is a widespread practice. However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the comprehensive understanding of such a complex field. Currently, the availability of the large amounts of expression data in public repositories has opened up new challenges on microarray data analyses. We have focused on PPARα, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart. The function of PPARα is strictly connected to the function of its target genes and, although many of these have already been identified, major elements of its physiological function remain to be uncovered. To further investigate the function of PPARα, we have applied a cross-species meta-analysis approach to integrate sixteen microarray datasets studying high fat diet and PPARα signal perturbations in different organisms.</p> <p>Results</p> <p>We identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly conserved and homologous of PPARα targets in mammals, potential candidates to be used as models for the equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements (PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in expression in the condition studied. Lastly, we found a non random localization of the differentially expressed genes in the genome.</p> <p>Conclusion</p> <p>The results presented are potentially of great interest to resume the currently available expression data, exploiting the power of <it>in silico </it>analysis filtered by evolutionary conservation. The analysis enabled us to indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARα and, moreover, the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic mechanisms are of importance in the regulation of the transcription operated by PPARα.</p

    Novel insights from functional analysis and mitochondrial proteome of yeast mutants lacking the proteins Sco1p or Sco2p.

    No full text
    The yeast Saccharomyces cerevisiae is a facultative anaerobe and its mitochondrial morphology is linked to its metabolic activity. The Sco proteins (Sco1p and Sco2p) were characterized as proteins required for copper delivery to cytochrome c oxidase. Our results indicated a higher fermentative capacity of the sco1-Delta mutant in comparison to the control and the sco2-Delta mutant strains. The mitochondrial proteome analysis showed that the sco1-Delta mutant down-regulated components of the respiratory chain, the TCA cycle and transport of metabolites across the mitochondrial membrane. This evidence suggests that the absence of Sco1p causes irreversible damage to the mitochondria. (C) 2009 Elsevier B.V. and Mlitochondria Research Society. All rights reserved

    Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure.

    Get PDF
    BACKGROUND Biocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces (occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes resulting from biocide exposure, which was the aim of this work. RESULTS Exposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant mutants showed increased susceptibility to compounds acting on the cell wall (β-lactams) or the cell membranes (poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins, cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility. CONCLUSIONS Multiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with global stress, or involving metabolic and membrane alterations, and eventually causing "collateral sensitivity" to other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants

    Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure

    No full text
    BACKGROUND: Biocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces (occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes resulting from biocide exposure, which was the aim of this work. RESULTS: Exposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant mutants showed increased susceptibility to compounds acting on the cell wall (β-lactams) or the cell membranes (poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins, cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility. CONCLUSIONS: Multiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with global stress, or involving metabolic and membrane alterations, and eventually causing "collateral sensitivity" to other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants

    Additional file 1: Figure S1. of Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure

    No full text
    MIC distributions to triclosan, chlorhexidine and benzalkonium chloride for 62 natural Salmonella isolates. The number of Salmonella isolates with reduced susceptibility to biocides analysed for gene expression are indicated above the arrows and MIC susceptibility values. Colors are according biocide distributions. (*) an isolate showed simultaneously reduced susceptibility to CHX and BKC. Other 6 isolates more susceptible for biocides were analysed for control (TRIS/CHXS/BKCS: 0.06-0.12/2-8/32-64 mg/L). Figure S2. XbaI digested-chromosomal DNA PFGE of several Salmonella mutants and its parental strain (5-35 s for 21 h). Figure S3. Growth curves of Salmonella mutants and the parental strain in plain LB at 37 °C with shaking. (DOCX 446 kb
    corecore