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Abstract

Background: Biocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces
(occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the
development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a
major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its
biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes
resulting from biocide exposure, which was the aim of this work.

Results: Exposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with
different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant
mutants showed increased susceptibility to compounds acting on the cell wall (β-lactams) or the cell membranes
(poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and
nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of
them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants
showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins,
cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase
system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in
vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility.

Conclusions: Multiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with
global stress, or involving metabolic and membrane alterations, and eventually causing “collateral sensitivity” to
other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant
bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants.
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Background
Salmonella enterica is a major food-borne pathogen able
to cause diarrhoea or thyphoid/paratyphoid fever [1].
The systemic infection is often preceded by an asymp-
tomatic chronic colonization or by a local infection
process. One of the major problems associated with per-
sistent colonization or infection is the steady rise of

antibiotic resistance among strains, which can lead to
treatment failures [2]. The association between the over-
use of antibiotics and/or biocides in farms, hospitals, in-
dustry and homes and the emergence of both co-
resistance and cross-resistance to different compounds
in Salmonella populations is of concern [3–6].
Unlike antibiotics, most biocides do not act on specific

cell targets. In fact, only a few mechanisms by which mi-
croorganisms became tolerant to these antimicrobials
have been fully characterized. Over-expression of multi-
drug efflux pumps such as AcrAB or AcrEF which are
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controlled by global transcriptional regulators such as
MarAB, RamA and SoxRS can lead to diverse levels of
resistance to biocides and/or antibiotics [7–13]. Often,
tolerance to triclosan is due to over-expression and/or
mutations in FabI, the enoyl-acyl-reductase protein re-
quired for fatty acid synthesis [14]. Moreover, exposure
and further adaptation to biocides may also impair cellu-
lar homeostasis, and/or changes the level of expression
of genes regulating synthesis and modification of cell en-
velope, virulence, motility, or stress response [15–20].
Whether or not such physiological changes are needed
for adaptation to the presence of biocides, or they just
reflect secondary changes associated with restoring fit-
ness after adaptation remains to be established. Previous
studies in Salmonella enterica prototype strain SL1344
have described the modification of antibiotic susceptibil-
ity, growth and regulation of different genes after expos-
ure to biocides [5, 6, 21]. However, few studies provided
comprehensive information about the genomic and tran-
scriptomic changes of mutants selected after exposure to
different biocides and antibiotics, which can be used ei-
ther coincidentally or sequentially in the clinical practice
and in the food industry [9, 22–24].
The aim of this study was to determine the effect of

exposure to some biocides (triclosan, TRI; benzalkonium
chloride, BKC; chlorhexidine, CHX and sodium hypo-
chlorite, SHC), or antibiotics (ampicillin, AMP; cipro-
floxacin, CIP), widely used in farms, hospitals, industry
and homes on the selection of antibiotic/biocide-

resistant Salmonella mutants and to characterize the as-
sociated genomic and transcriptomic profiles, as well as
the extended phenotypes (susceptibility to 240 inhibitory
compounds). To address whether these adaptive changes
found in laboratory-selected mutants also occurred in
natural populations of Salmonella, the transcriptomes of
a set of field isolates exhibiting reduced susceptibility to
biocides were comparatively studied.

Methods
Bacterial strains
The prototype S. enterica serovar Typhimurium SL1344
[25] strain was exposed to biocides (TRI, CHX, BKC and
SHC), and antibiotics (the β-lactam ampicillin, AMP;
and the fluoroquinolone ciprofloxacin, CIP). The quanti-
tative phenotype of this strain against diverse antimicro-
bials is summarized in Table 1.
Sixteen Salmonella spp. isolates from food-borne ani-

mals with reduced susceptibility to TRI (3 TRIR; MIC 1-
2 mg/L), BKC (7 BKCR; MIC = 128 mg/L), CHX (1 being
CHXR/BKCR, MIC = 16 mg/L (Additional file 1: Figure
S1) used in a previous work [26], were investigated for
their transcriptomic profiles. Such isolates, collected in a
veterinary surveillance project in Europe, showed 13 dif-
ferent PFGE-types and belonged to Salmonella enterica
subspecies enterica [serovars Anatum (n = 8), Hadar (n =
5), Dublin (n = 2)] and subspecies Typhimurium (n = 1).
Most of these strains were susceptible to antibiotics. A

few number of isolates harbored plasmids that contained

Table 1 Susceptibility profiles of Salmonella mutants respect to SL1344 parental strain

N.° Pre-conditioning
agent

Biocide Phenotype Biocide MIC (mg/L) Antibiotic MIC (mg/L) Mutant
designation

Fitness
Cost (%)

Frequency
of mutationTRI BKC CHX AMP CAZ CIP ERY GEN CLO TET

- Parental strain SL1344 0.06 16 16 1.5 0.38 0.032 32 1.0 3 3

1 NE TRIR/BKCR/CHXR 2 32 32 1.5 0.38 0.047 32-48 1.5 3 2 NE/TRI1 11 >1.25E-07

2 NE 0.12 32 32 1 0.25 0.032 32 1.0 4 4 NE/CHX2 34 2.92E-09

3 BKC 0.12 32 32 2 0.38 0.023 32 1.5 3 4 BKC/AMP - 2.50E-09

4 CHX 0.12 32 32 1 0.5 0.032 48 1.5 2 2 CHX/BKC3 - 1.67E-09

5 BKC TRIR/BKCR 0.12 32 16 2 0.38 0.032 48 0.5 4 4 BKC/BKC3 - 2.50E-09

6 CIP BKCR 0.06 32 16 1.5 0.5 0.032 24 1.5 2-3 1.5 CIP/TRI1 More fit <1.50E-05

7 TRI 0.06 32 16 2 0.5 0.032 32 1.5 3 2-3 TRI/BKC3 31 1.50E-09

8 NE BKCR/CHXR/TRIHS 0.03 32 32 2 0.38 0.032 32-48 1 4 4 NE/BKC2 - 1.25E-07

9 NE 0.03 32 32 1.5 0.75 0.047 24 1.5 3 1.5 NE/BKC3 more fit 2.08E-11

10 TRI 0.015 32 32 1.5 0.5 0.032 24 1.5 2 1.5 TRI/AMP - 3.06E-09

11 BKC 0.015 64 32 2 0.38 0.023 32 1 3 4 BKC/CHX2 - 1.67E-08

12 CIP TRIHS/CHXHS 0.03 16 8 2 0.38 0.032 32 2 4 3 CIP/CHX1 - <2.50E-06

13 BKC TRIHS 0.015 16 16 1 0.38 0.023 64 1.5 3 1.5 BKC/CIP - 1.50E-09

14 CHX 0.015 16 16 2 0.38 0.023 32-48 0.75 3 4 CHX/AMP 17 4.17E-09

NE: non-exposed, - Not done
In the designation of mutants, numbers 1-3 refer to the concentration of compounds in plates as follows: 1- 32 mg/L, 2- 64 mg/L and 3-128 mg/L
Mutants CIP/TRI1 and CIP/CHX1 classified as more fit than SL1344 exhibited -17 % and -21 %, respectively
WGS was performed in the underlined mutants
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acquired genes coding for resistance to β-lactams (blaTEM-

1), aminoglycosides (strA, strB), tetracycline (tetA, tetR)
and quinolone (qepA). Plasmids from 6 isolates also car-
ried genes encoding resistance to metals (As, Co).

Selection of mutants
A colony of S. enterica serovar Typhimurium SL1344
grown overnight in Luria Bertani (LB) plates was inocu-
lated into LB-broth and LB supplemented with sub-
inhibitory concentrations (1/2 ×MIC) of biocides (TRI,
CHX, BKC and SHC; Sigma-Aldrich, Inc., St. Louis,
MO) or antibiotics (AMP and CIP) and further incu-
bated overnight at 37 °C with shaking at 150 rpm. Sub-
sequently, aliquots of 100 μl were plated onto LB plates
containing a single biocide or a single antibiotic com-
pound at concentrations ranging 2.5-33 ×MIC and incu-
bated at 30 °C. These primary selective plates were
examined for growth during 7 days. A variable number
of viable mutants (one per colony morphotype per plate)
were tested for growth on secondary selective plates
containing other biocides or antibiotics. The stability of
mutants was evaluated after serial passages in non-
selective LB broth (up to 50 generations). Mutants were
named by the acronym name of the antimicrobial com-
pound added to the broth cultures before plating,
followed by the name and concentration of the com-
pound added to the selective agar plates from where the
mutant was retrieved. The mutants obtained from broth
cultures not supplemented with any antimicrobial were
designated as non-exposed (NE). Phenotypes of de-
creased and increased susceptibility to biocides and anti-
biotics appear represented by the super indexes “R” or
“HS”, respectively. The colonial morphology in LB and
blood agar plates was compared between mutants and
the parental strain. The variability of XbaI-digested gen-
omic DNA profiles of mutants and parental strain was
assessed by pulsed field gel electrophoresis (PFGE) using
standard protocols for DNA preparation, digestion and
PFGE running conditions for Enterobacteriaceae [27].

Antimicrobial susceptibility testing
The minimal inhibitory concentrations (MICs) of bio-
cides (TRI, CHX, BKC) and antibiotics (AMP; CAZ;
CIP; erythromycin, ERY; gentamicin, GEN; chloram-
phenicol, CLO; tetracycline, TET) (BioMérieux, Marcy
l’Etoile, France) were determined by both broth micro-
dilution using E- test strips following CLSI guidelines.
Escherichia coli ATCC10536 and Staphylococcus aureus
ATCC6538 were used as control strains (3). Minimum
bactericidal concentrations (MBCs) were determined by
subculturing 10 μl from each well without visible bacter-
ial growth when MIC was determined on Mueller-
Hinton broth (Difco, Becton Dickinson, Maryland,
USA). The minimal concentration yielding no-growth

after overnight incubation at 37 °C was scored as the
MBC. The susceptibility of wild type strains to AMP,
streptomycin, sulphonamides, trimethoprim, nalidixic
acid, CIP, CLO, TET, GEN and kanamycin was deter-
mined by disk diffusion.
Further, the susceptibility of mutants and the parental

strain to 240 cell growth-inhibiting chemical compounds
was screened using the Phenotype MicroArray PM11-
PM20 in two independent experiments (Biolog,
Hayward, CA, USA) as previously described [28]. The
strains were grown overnight at 30 ° C on BUG agar
(Biolog Universal Agar, Biolog Hayward California) and
then, colonies were picked up with a sterile cotton swab
and suspended in 15 ml of 1X inoculation fluid (IF-0a
GN/GP Base, Biolog 74268). Cell density was adjusted to
85 % transmittance (T) on a Biolog turbidimeter. Inocu-
lation fluid for PM11-20 was prepared mixing 100 ml of
IF-10a GN Base (1.2X) (Biolog 74264), 1.2 ml of Biolog
Redox Dye A (100X) (Biolog 74221), 0.6 ml of cell sus-
pension at 85 % T, bringing to a final volume of 120 ml
with sterile water. The mixture was inoculated in the
PM plates (100 μl per well) and monitored automatically
for color development every 15 min for 72 h at 30 °C in
an Omnilog reader (Biolog). To identify phenotypes, the
kinetic curves of both parental strain and mutants were
compared using Omnilog-PM software (release
OM_PM_109M). Such comparison was based on the
half maximal inhibitory concentration (IC50) values for
4 concentrations of each antimicrobial, which is defined
as the well at which a particular per-well parameter is
the half of its maximal value over the concentration
series; the reference parameter being the area under the
curve. Raw data were filtered using differences of aver-
age area of mutant compared to control taking a differ-
ence of 1:3 (33 %) as significant.

Growth kinetics
The growth kinetics of both the parental strain SL1344
and biocide-tolerant mutants exhibiting various pheno-
types was determined by measuring the optical density
at 600 nm every 5–10 min for 24 h at 37 °C in Bioscreen
C (ThermoLabsystems, Helsinki, Finland), adapting the
method described by Foucault et al. [29]. Inocula in a
concentration of 104 to 105 CFU/ml were obtained from
a 1/1000 dilution of an overnight culture in fresh LB
broth and aliquots of 400 μl were seeded in triplicate in
a microtitre plate. Growth rates were determined in the
interval estimated to be exponential using the Growth-
Rates 2.1 program [30]. The fitness cost (FC) reflects the
relative growth rates, which were based on the individual
growth rates of mutants relative to the parental strain.
For each strain, data from growth rates were averaged
and standard deviations calculated.
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Whole genome sequencing (WGS)
Six mutants with different phenotypes were selected for
whole genome sequencing. Genomic DNA was extracted
from 1 ml of overnight cultures in plain LB broth using
a Promega Wizard Genomic DNA Purification kit ac-
cording manufacturer instructions. Genome sequencing
was performed on Illumina MiSeq platform to obtain
100–200 bp paired-end reads. Reads were revised and
corrected using Lighter software and further mapped
against the genome of the SL1344 strain (GenBank acc.
Number FQ312003) using Breseq v0.26.1 pipeline
(http://barricklab.org/twiki/bin/view/Lab/ToolsBacterial-
GenomeResequencing). Single nucleotide polymor-
phisms (SNPs) detected in all mutants were not deemed
confident and were excluded, because we cannot dismiss
differences between the laboratory SL1344 strain used as
wild-type in this work, and that corresponding to the ca-
nonical sequence in the GenBank database. Reads not
found in all mutants were treated as deletions.

Transcriptome analysis
Array Design and Production
An array was designed to cover the complete genome of
Salmonella enterica subsp. enterica serovar Typhimur-
ium, as well as plasmids isolated from various Gram-
negative microorganisms. Probe design was performed
by the CustomArray Design Service (CustomArray Inc.,
Bothell, WA, USA) and included 12,005 capture probes
(35–40 bp length), 326 quality control probes and 65
non-specific probes derived from plants, phages and un-
related bacterial sequences, and also 148 empty spots
with no oligonucleotides. Arrays were synthesized on a
CustomArray Synthesizer (CombiMatrix, Mukilteo, WA)
and quality tested using the standard protocols provided
by the manufacturer.

RNA extraction
Strains were grown overnight in 10 ml LB broth at 37 °
C, 150 rpm. The cultures were diluted 1:100 in pre-
warmed LB and grown to logarithmic phase (OD570 =
0.5). 2 ml of the culture (5 x 108 – 1 x 109 colony form-
ing units (UFC)/ml) were harvested in 4 ml of RNA pro-
tect reagent® (Qiagen GmbH, Hilden, Germany),
incubated for 5 min at room temperature and centri-
fuged for 10 min at 5000 x g. Bacterial pellets were sus-
pended in 200 μl of TE buffer (10 mM Tris/HCl, 1 mM
EDTA, pH 8) containing 1 mg/ml lysozyme (Sigma) and
incubated for 5 min at room temperature, 600 rpm.
Total RNA was then extracted using RNeasy Mini Kit
(Qiagen), according to the manufacturer’s instructions.
Contaminating DNA was removed using DNA-free™ Kit
(Applied Biosystems). The RNA isolation procedure was
validated for RNA quality by testing RNA samples on an
Agilent 2100 Bioanalyzer (Agilent Technologies). RNA

concentration and purity were determined by Nanodrop®
ND-1000 spectrophotometer (Thermo Scientific). For
each strain, at least 4 RNA samples were prepared from
independent cultures.

RNA labelling and fragmentation
Isolated, unamplified RNA was labelled with Cy5, using
ULS™ Labeling Kit for CombiMatrix arrays (Kreatech
Biotechnology), according to the manufacturer’s instruc-
tions. RNA was fragmented with the RNA Fragmenta-
tion Reagents (Ambion®).

Array hybridization
12 K Custom arrays were hybridized with 2 μg of la-
belled, fragmented RNA, according to information pro-
vided by the manufacturer (Customarray/Combimatrix
Incorporated). In brief, after pre-hybridization of the ar-
rays, hybridization was performed at 45 °C for 16 hours
in a hybridization buffer containing 25 % formamide.
After washing steps, microarrays were scanned using
Packard ScanArray4000 array scanner and software (Sca-
nArray, version 3.1, Packard BioChip Technologies) with
incremental laser power from 15 to 100 %. Data were
extracted with Microarray Imager software (version
5.8.0, Combi Matrix) and spot intensity expressed as me-
dian intensity. After scanning, microarrays were striped
using 12 K CustomArray™ Stripping kit, according to the
manufacturer’s instructions. Quality of the stripping was
verified by scanning the microarray at maximal laser in-
tensity and repeated when necessary. Microarrays were
used up to four times.

Data analysis
To adjust for difference in the amount and labelling effi-
ciency of hybridized RNAs, the median fluorescence in-
tensity values of all spots was determined for all laser
intensities used during scanning. Scanning data with
similar median fluorescence intensity were chosen for
further analysis. Fluorescence values of spots with max-
imal intensity (signal saturation) at a given laser intensity
were extrapolated by linear regression, using values
gathered with lower laser intensity. For each set of arrays
for a given strain, non-specific binding was determined
from fluorescence values of the non-specific probes. The
cut-off for specific binding was set as the upper 95 %
confidence interval of the mean signal intensity of the
non-specific probes. Probes were excluded when the
mean values for the strains compared were under the
cut-off value.
The fluorescence values were log2 transformed and

stage-wise quantitative normalization was performed for
each set of comparison, using a script written in the statis-
tical computing environment of R (R Development Core
Team, 2011, version 3.3). To identify genes differentially
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regulated, we analyzed the transformed and normalized
intensities determined by two methods, the Significance
Analysis of Microarrays method (SAM, version 5.0, run-
ning under Shiny, a web-based interactive application
framework for R environment, https://github.com/MikeJ-
Seo/SAM) and “R”, comprising base package statistics and
the attached LIMMA package (version 3.26.5). The pres-
ence of genes identified by both methods in the mutants
analyzed was searched in the wild type strains included in
the study and transcriptomic profiles were compared. The
expression profiles of these genes were visualized in a
heatmap built with the ‘pheatmap’ package in “R”.

Statistical analysis
In the SAM method, the delta value was set to obtain an
average. False Discovery Rate (FDR) of 5 % and the fold
change cut-off value was established as 1.5. In LIMMA
analysis, genes with a fold change >1.5 and p < 0.05 were
considered as differentially expressed. Only the genes
identified as differentially expressed by both SAM and
LIMMA were considered.

Availability of supporting data
The data sets supporting the results of this article are
available in the ArrayExpress repository, (http://www.e-
bi.ac.uk/arrayexpress/) under accession numbers A-
MEXP-2366 (S. Typhimurium combimatrix 12 K custo-
marray design) and E-MTAB-2554 (microarray raw
results).

Results
Exposure to biocides or antibiotics yield mutants with
different susceptibility to biocides and antimicrobials
Table 1 shows the diversity of mutants exhibiting pheno-
types obtained (4 TRIR/BKCR/CHXR, 1 TRIR/BKCR, 4
BKCR/CHXR/TRIHS, 2 BKCR, 2 TRIHS and 1 TRIHS/
CHXHS). Some mutants with increased MICs to biocides
were obtained without previous exposure to any anti-
microbial but using selective plates supplemented with
TRI, BKC or CHX. Others were retrieved after exposure
to antibiotics such as CIP and AMP. Previous expos-
ure to SHC did not yield resistant mutants. A num-
ber of biocide tolerant mutants mentioned above
showed lower MIC values for AMP, CAZ, CIP, ERY,
GEN, CLO and TET than those for the corresponding
parental strain (<2-fold).
Preexposure to sub-inhibitory concentrations of BKC

resulted in mutants with either decreased susceptibility
to BKC, TRI and/or CHX (TRIR/BKCR/CHXR, TRIR/
BKCR) or increased susceptibility to TRI (TRIHS, BKCR/
CHXR/TRIHS). Two of these four mutants selected in
plates supplemented with BKC also showed a slight in-
crease in MICCAZ (1 BKCR and 1 BKCR/CHXR/TRIHS).
The TRIR/BKCR/CHXR and the TRIHS phenotypes were

also selected after pre-exposure to CHX, CIP or without
pre-exposure to any antimicrobial. A hyper-susceptible
TRIHS mutant (BKC/CIP) showed a 2-fold increased
MICERY.
Preexposure to sub-inhibitory concentrations of TRI

resulted in mutants that only showed the phenotypes
BKCR and BKCR/CHXR, which could even exhibit in-
creased susceptibility to TRI. Such BKCR mutants
showed a minor increase in MIC values to CAZ. Two
different mutants were selected on plates supplemented
with TRI, one obtained without previous exposure to an-
timicrobials showed an increased MICTRI (33-fold) and
small increases in MICCIP, MICERY and MICGEN. The
other, obtained after pre-conditioning with CIP did not
show an increase in MICTRI. Pre-exposure to CIP re-
sulted on mutants showing BKCR or TRIHS phenotypes,
which were closely related with the above ones.
A more comprehensive analysis of the effects that the

exposure to biocides and antimicrobials had on Salmon-
ella strain SL1344 strain was performed by characteriz-
ing the genome and transcriptome of six mutants
representing the phenotypes TRIR/BKCR/CHXR (CHX/
BKC3, NE/TRI1, NE/CHX2), BKCR/CHXR/TRIHS (NE/
BKC3), BKCR (TRI/BKC3), and TRIHS (CHX/AMP)
(Table 2).

Antimicrobial susceptibility
We identified mutants with a given biocide phenotype
and variable antibiotic susceptibility patterns but also
mutants exhibiting different biocide susceptibility phe-
notypes and similar antimicrobial susceptibility profiles
(Table 3). The activity of different compounds against
seven mutants and the parental strain was evaluated
considering their IC50 values. High IC50 values were ob-
served for antibiotics that inhibit protein synthesis (e.g.
neomycin and thiamphenicol), specific metabolic routes
as the reduction of dihydrofolic acid to tetrahydrofolic
acid, which is an essential precursor in the thymidine
synthesis pathway (trimethoprim), or membrane acting

Table 2 Techniques carried out for a representative subset of
mutants

Mutant n° Mutant
name

Biolog
(Table 3)

WGS
(Table 4)

Gene expression
(Fig. 1 and Fig. 2)

1 NE/TRI1 Yes Yes Yes

2 NE/CHX2 No Yes Yes

4 CHX/BKC3 Yes Yes Yes

7 TRI/BKC3 Yes Yes Yes

9 NE/BKC3 Yes Yes Yes

10 TRI/AMP Yes No No

11 BKC/CHX2 Yes No No

14 CHX/AMP Yes Yes Yes

Yes and No denotes whether the technique was performed or not
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Table 3 Antimicrobial susceptibility determined by BIOLOG for Salmonella enterica mutants in comparison to the parental strain

TRIR/BKCR/CHXR BKCR BKCR/CHXR/TRIHS TRIHS

Chemicals Inhibitor Family NE/TRI1 CHX/BKC3 TRI/BKC3 NE/BKC3 TRI/AMP BKC/CHX2 CHX/AMP

ANTIBIOTICS

Neomycin aminoglycosides R R R R R R S

Paromomycin S S S S

Sisomicin S S R R S R R

Chloramphenicol amphenicols S S S

Thiamphenicol R R R R R

Cefazolin cephalosporins R

Ceftriaxone S

Amoxicillin lactams S R S S S R R

Aztreonam S S S

Carbenicillin S S S

Carbenicillin (II) R

Phleomycin DNA oxidants R

Cinoxacin DNA topoisomerases
inhibitors

S S S S S R

Ciprofloxacin R R R R

Enoxacin R S S S S S R

Nalidixic acid R S S R S S R

Novobiocin S

Ofloxacin S S S S S

Pipemidic acid R

Hydroxyurea folate antagonists R S R S R R S

Trimethoprim R R R R R

Troleandomycin macrolides R R R

Rifampicin RNA polymerase inhibitors S

Penimepicycline tetracyclines S S S R S

Tetracycline S

NON-ANTIBIOTICS

1-Hydroxypyridine-2-thione chelators S S S

5,7-Dichloro-8-OHquinoline S S S

5-Chloro-7-iodo-8-OHquinoline S R S R S S

8-Hydroxyquinoline R R R R

Fusaric acid S S S S

2-Phenylphenol DNA intercalators R

Chloroxylenol Fungicides R

Patulin R R R R

Colistin Membrane active agents S S S S S S R

Polymyxin B S S S S

Polymyxin B (II) R

Poly-L-lysine S S S S S S S

Alexidine S S

Ornidazole oxidizing agents S S S

1-Chloro-2,4-dinitrobenzene S S R S R R

Atropine other drugs S S
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compounds (toxic cations, such as antimony (III) chlor-
ide). Conversely, compounds that act on the bacterial
cell envelopes (such as colistin, β-lactams, poly-L-lysine,
polymyxin B), toxic anions (e.g. potassium chromate),
quaternary salts (e.g. sodium metaborate) and protease
inhibitors showed low IC50 values.
Within this common antimicrobial susceptibility profile,

differences were observed for some mutants. The two
TRIR/BKCR/CHXR (CHX/BKC3, NE/TRI1) and the
BKCR/CHXR/TRIHS (NE/BKC3) exhibited an increased
susceptibility to the oxidizing agent 1-chloro-2,4-dinitro-
benzene, and the tRNA synthetase inhibitor D,L-methio-
nine hydroxamate. The two mutants exhibiting decreased
susceptibility to CIP by standard MIC testing, TRIR/
BKCR/CHXR (NE/TRI1) and BKCR/CHXR/TRIHS (NE/
BKC3) also showed resistance to other quinolones such as
nalidixic acid and/or enoxacin. Those with increased sus-
ceptibility to TRI [BKCR/CHXR/TRIHS (NE/BKC3) and
TRIHS (CHX/AMP)] were more tolerant to benzethonium
chloride than the parental strain. This compound is a syn-
thetic QAC widely used in different settings, including the
food industry as a hard-surface disinfectant, antiseptic,
and in foaming hand sanitizers [31]. It is noteworthy that
resistance to TRI in Salmonella was frequently associated
with tolerance to several antibiotics of different families,
with the exception of aminoglycosides.

Changes in the genome of SL1344 strain after exposure
to biocides
The six SL1344 mutants fully sequenced showed SNPs
and deletions in genes involved in cell division/stress,
membrane transport, cell motility, metabolism and viru-
lence (Table 4).
The three TRIR/BKCR/CHXR mutants (NE/TRI1,

CHX/BKC3, and NE/CHX2) differed in the number and
nucleotide changes. The NE/TRI1 mutant presenting the
highest MICTRI value (2 mg/L) had a SNP in the fabI
gene that resulted in the Gly93Ser change in the binding
site of FabI. It also presented a SNP in the ftsK gene,
which is involved in cell division and likely in the last
steps of peptidoglycan biosynthesis. The CHX/BKC3
mutant harboured two mutations in the ftsK gene and a
SNP in the yeaN gene, which encodes a still uncharac-
terized transporter of the Major Facilitator Superfamily
(MFS). Finally, the NE/CHX2 mutant showed a SNP in
the intergenic region in the boundary of purH and the
16S rRNA genes, the former related to purine metabol-
ism and previously associated with virulence in different
bacterial species.
The BKCR/CHXR/TRIHS (NE/BKC3) mutant showed

unique SNPs in mipA, asnA, aarF genes, but the same
SNP described above for NE/CHX2. MipA is an outer
membrane protein possibly involved in a novel antibiotic

Table 3 Antimicrobial susceptibility determined by BIOLOG for Salmonella enterica mutants in comparison to the parental strain
(Continued)

Pridinol R R R R R

Propranolol S S S S S S

Chlorpromazine S S S S S S

Benzethonium chloride QACs S S S R S S R

Cetylpyridinium chloride S

Sodium azide respiration, uncoupler S

Thioridazine S S S

Potassium chromate toxic anions S S S S S R

Potassium tellurite (II) S R R R S S

Sodium metaborate S S S S S S S

Sodium tungstate R

Sodium periodate R R

Antimony(III) chloride toxic cations R R R R R

Cadmium chloride R R

Thallium(I) acetate R R

D,L-Methionine hydroxamate other inhibitors S S S S S S S

Phenyl-methylsulfonyl-fluoride S S S S S S

D-Serine R

6-Mercaptopurine S S R

Compound 48/80 S S

Blank cells indicate that no variation in the susceptibility were found in comparison to the parental strain
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resistance mechanism against kanamycin in E. coli [32].
The other genes are related to the metabolism of amino
acids and ubiquinones.
The TRIHS mutant (CHX/AMP) showed an amino

acid change in TolA, the membrane protein specialized
in colicin uptake which has been previously involved in
detergent tolerance [33], along with a mutation in the
intergenic region between the glutamyl-t-RNA synthe-
tase (459 bp)/(359 bp) and the regulator of the xanthosin
operon transcriptional regulator.
The genome of the BKCR mutant (TRI/BKC3) showed

three changes located at the nucleotide sequence of
motB gene, the intergenic region next the tdc/garA op-
eron and a deletion in the bigA gene. The motB (and
motA) gene encodes flagellar motor proteins that gener-
ate the stator and proton channel anchored to the
peptidoglycan layer. The tdc operon is a single transcrip-
tional unit involved in threonine and serine metabolism
during anaerobic growth. Finally, deletions in the bigA
gene encoding a hypothetical surface/exposed protein
were associated with virulence in some intracellular
pathogens [34]. Deletions in bigA gene were also found
in other two mutants showing TRIHS (CHX/AMP) and
TRIR/BKCR/CHXR (NE/CHX2) phenotypes.

Changes in the transcriptome of S. enterica SL1344
biocide resistant mutants
Figure 1 shows the Volcano Plots of genes altered after
exposure to biocides in the six mutants analyzed and
Fig. 2, the heatmap clustering mutants according to the

expression profiles of genes identified as differently regu-
lated using both methods (LIMMA and SAM). Down
regulation of genes was more remarkable than overex-
pression of genes (-4 fold vs 2 fold Additional file 2:
Table S1).
Differential expression was identified for genes involved

in cellular metabolism (carbohydrate, lipid, amino acid,
and cofactors), energy production, ion transport/metabol-
ism, protein synthesis and signal chemotaxis pathways
(Additional file 3: Table 2). The expression of genes clas-
sically involved in tolerance to biocides as efflux-pumps
(tolC, sugE) was slightly increased in some mutants.
Two TRIRCHXRBKCR mutants (CHX/BKC3, NE/TRI1)

and one BKCR (TRI/BKC3) showed similar gene expres-
sion profiles. Upregulation of genes involved in protein
synthesis occurred in these three mutants, and some other
changes were common, either in three or two of them, in-
volving genes related to transcription such as rpoZ and
rpoB which encodes subunits of the RNA polymerase.
Conversely, transcriptional regulators were repressed in
NE/TRI (malT) and CHX/BKC3 and TRI/BKC3 (hilC,
hilD, sprB). The maltose monomeric activator MalT is a
LuxR/UhpA member, a family of large size proteins be-
lieved to have another functions (e.g. amino acid metabol-
ism). The others are members of the AraC family and
negative regulators of HilA, the key regulator of the Sal-
monella pathogenicity island 1 (SPI1) [35, 36].
Both TRI/BKC3 and CHX/BKC3 mutants shared a

pattern of down-regulation of genes related to transport
and metabolism with a potential role in virulence such

Table 4 Mutations identified in sequenced mutants

TRIRCHXRBKCR BKCR TRIHSCHXRBKCR TRIHS

Function Gene NE/TRI1 NE/CHX2 CHX/BKC3 TRI/BKC3 NE/BKC3 CHX/AMP

Amino acid/peptide
transport/metabolism

asnA a G→ T/A74A

Energy production/
amino acid metabolism

aarF b T→ A/L317Q

Lipid metabolism fabI c G→A/G93S

Membrane/transport tolA d T→ A/V168E

Replication ftsK e T→ G/P772P A→ T/Q780H A→ T/Q793H

Surface structures mipA f T→ C/F61L

motB g T→ G/E128D

Virulence bigA h Deletion:408 bp Deletion:331 bp Deletion:293 bp

Intergenic -/- i T→ A

purH j/- A→ C A→ C

tdcA/garA k C→ T

Unknown yeaN l C→ G/T321T

Description of gene products: a Asparagine synthetase A, b Ubiquinone biosynthesis protein; c Enoyl-acyl carrier protein reductase (NADH); d Membrane transporter
TolA protein; e Cell division protein FtsK; f Hypothetical outer membrane protein; g Motility protein B; h Hypothetical surface-exposed virulence protein; i Intergenic
region between Glutamyl-t-RNA synthetase (459 bp)/(359 bp) Xanthosin operon transcriptional regulator; j Intergenic region between Phosphoribosylaminoimide-
zolecarboxamide fosmyltransferase and IMP cyclohydrolase/- (16S rRNA); k tdc operon transcriptional activator/Hypothetical surface-exposed virulence protein; l

Hypothetical membrane protein of Major Facilitator Superfamily (transporter)
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as some within type III secretion system complex, e.g.
prgI, pgrH and sopE or possibly ompC, encoding surface
proteins involved in chemotaxis signal transduction sys-
tem i.e. part of flagella and invasion proteins (iagB and
orgA). The resultant proteins regulate the events that lead
to changes in the swimming behaviour of the cell [37].
Moreover, the two mutants NE/TRI1 and CHX/BKC3 dis-
tinguished from the rest by the down-expression of genes
linked to threonine metabolism (tdcB and tdcC).
Overexpression of genes coding for metabolic enzymes

related to energy production such as glucose catabolism
(GapA pyruvate kinase, fumarate reductase), some PTS
systems and other carbohydrate metabolic components
were shown for TRI/BKC3.
Genes with a function related to some of those with

mutations such as ftsl2 and ftsH, yeaD, yeaC and yeaF,
tdcB, tdcC and tdcE were found to have altered expres-
sion in several mutants.

Similar transcriptomic profiles were exhibited by field
Salmonella strains showing variable reduced susceptibility
to biocides and the laboratory-selected mutants
The genes with altered expression in mutants were in-
vestigated for their expression in field isolates with de-
creased susceptibility to biocides (Fig. 3, Fig. 4 and
Additional file 3: Table S2). Over and down expression
of particular genes was noticed for both natural isolates
and mutants (3 and -4 fold changes, respectively).
Similarly to what was observed for mutants, transcrip-

tomic changes did not fully correlate with the pheno-
types of susceptibility to biocides. However, enhanced
expression of some of the same ribosomal proteins was
identified for field strains. A higher number of
metabolism-related genes were over-expressed in the
wild-type isolates. Furthermore, the over-expression of
genes encoding pathogenicity-related proteins (e.g.
macrophage stimulating factor, flagellar hook-associated,

Fig. 1 Volcano plots of genes showing altered expression after exposure to biocides in the six mutants analyzed. Log2 fold changes and their
corresponding p-values of all genes in the microarray were considered to build the Volcano plot. Genes up-regulated (>1.5 fold change, p< 0.05)
are depicted in red box. Genes down regulated (>1.5 fold change, p < 0.05) appear in blue boxes. Genes that did not show a significantly modified
pattern are represented in grey dots and the yellow dots depict the genes found in both SAM and LIMMA outputs for each mutant
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Fig. 2 Heat map of the genes with altered expression in different mutants
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factor PagK and membrane-related such as PgtE prote-
ase) occurred in different strains.
Other changes were only detected among wild-type

strains. For example, the strain with the highest MBC for
TRI (>512 mg/L) showed a high level expression of the
ABC transporter ydeY, a pump for which a role on biocide

resistance has not been described so far. Up-regulation of
genes involved in the modification of the lipid A implicated
in polymyxin resistance was found for some TRIR and
BKCR strains. On the other hand, slight down-regulation of
the acrE efflux pump was observed in three PFGE-
unrelated strains exhibiting a susceptible biocide phenotype

Fig. 3 Volcano plots of genes showing altered expression in both natural isolates and mutants. Log2 fold changes and their corresponding
p-values of all genes in the microarray were considered to build the Volcano plot. Genes up-regulated (>1.5 fold change, p < 0.05) are depicted in
red box. Genes down regulated (>1.5 fold change, p < 0.05) appear in blue boxes. Genes that did not show a significantly modified pattern are
represented in grey dots.
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Fig. 4 Heat map of the common genes with altered expression of natural isolates and mutants
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(TRIS/CHXS/BKCS) while one of them had the sugE gene
over-expressed. A number of antibiotic resistance genes
were up- or down-regulated in natural isolates.

Resistance to biocides reduces the fitness of Salmonella
SL1344
Variable values of fitness cost (FC) were observed for
some mutants with disparate biocide phenotype (Table 1
and Additional file 1: Figure S2). Both NE/CHX2 (TRIR/
BKCR/CHXR), which did not show any considerable sus-
ceptibility change, and TRI/BKC3 (TRIHS/BKCR/CHXR),
showed the highest FC values (34 % and 31 %, respect-
ively). They had deleted bigA gene. Mutants TRIR/BKCR/
CHXR (NE/TRI1), and TRIHS (CHX/AMP) showed simi-
lar FC values (11 % and 16 %, respectively) (Additional
file 1: Figure S2). Mutants fitter than parental strain
showed increased MICCAZ.
Besides changes in growth rates, altered colony

morphology was also observed. Although several mu-
tants had smoother and smaller colonies than the paren-
tal strain, we did not observe notable differences in the
rdar (red, dry and rough) morphotype, an aggregative
and resistant physiological state which has been linked
to survival in nutrient-limited environments [38], or in
the genomic XbaI-genomic digested DNA profiles
(Additional file 1: Figure S3).

Discussion
This paper documents a versatile adaptive response of
the Salmonella enterica strain SL1344 after exposure to
inhibitory concentrations of biocides or antibiotics
which resulted on a diversity of phenotypes and genomic
and proteomic changes. The emergence of mutants with
phenotypes of antimicrobial resistance (antibiotics and/
or biocides) which had not been previously exposed to
antimicrobial agents but were recovered on selection
plates, suggests that a variety of mutants with altered
susceptibility to biocides easily arises. Biocides, acting on
multiple cellular targets, would drive random selection
of mutants, eventually causing pleiotropic changes; and
therefore a high diversity of phenotypes were associated
with biocide-tolerance. The fact that SHC did not select
for mutants might provide a chance for efficient and safe
sanitization.
Most mutants showed slight variations in their MIC

values to the antimicrobials tested. Although cross-
resistance between biocides and antibiotics is frequently
described for biocide resistant mutants, we also observed
increased susceptibility for some antimicrobials, a phe-
nomenum that can be attributed to frequent collateral
effects in the emergence of resistance as previously doc-
umented for antibiotic resistant bacteria [39, 40]. Indeed,
antimicrobial resistant mutants of Salmonella presented
increased susceptibility to envelope active inhibitory

compounds. Importantly, this sort of compounds turns
the cytoplasmic membrane more permeable, which often
results on reduced viability. Therefore the ability to be-
come resistant to these antimicrobials is lower. A part
from the membrane vulnerability, most mutants poten-
tially had alterations in the oxidative metabolism and
protein synthesis. Our data showed that TRI resistance
was often accompanied by higher tolerance to com-
pounds of different antibiotic families, with the excep-
tion of aminoglycosides. This finding is in line with
other studies in Salmonella enterica strains that reported
increases in the susceptibility to aminoglycosides and
CHX accompanying TRIR [41, 42]. While most studies
on the field focused on the analysis of cross-resistance of
biocides and antibiotics, negative epistasis phenomena
inferred from the simultaneous emergence of suscepti-
bility to aminoglycosides or biocides and resistance to
other antimicrobial agents are not uncommon [20, 39].
This antagonistic pleiotropy epistatic effect known as
“collateral sensitivity” must be taken into consideration
when evaluating the risks for the acquisition of resist-
ance or to envisage methods for reducing or even elim-
inating resistant microorganisms in the field [40, 43].
Comparative genomic analysis revealed changes in a

variety of genes, some of them previously linked to toler-
ance to antibiotics or metals (fabI, yea and fts) [44] and
others newly identified here. Different amino acid
changes at position 93 of the FabI protein resulted in
TRIR phenotypes [24, 32, 41, this study]. However, differ-
ences in the polarity of amino acids at position 93 might
be associated with distinct structural conformations of
FabI protein that would affect MICTRI values; higher
values (MICTRI ≥ 2 mg/L for the mutant of this study)
occurring when an uncharged amino acid (Gly or Val) is
substituted by a polar amino acid (Ser).
Non-functional ftsK gene mutants have previously

shown increased susceptibility to β-lactams and CIP and
tolerance to chromate in Pseudomonas aeruginosa [45].
In this study mutants with SNPs in ftsK (NE/TRI1 and
CHX/BKC3) showed either increased susceptibility to
several β-lactams or to most CIP-related antibiotics, re-
spectively. The tolA gene showed a mutation and differ-
ential expression in different mutants. Other SNPs may
also modulate virulence in the mutants as for instance,
mutants in motB (and motA) genes may paralyse the fla-
gellar phenotype influencing adhesion and invasion of
cells [46]. Flagellar assembly and/or mobility may
antagonize the T3SS that delivers effectors into the host
cell of some pathogens, revealing the potential impact of
cross talk between some virulence factors depending on
the bacterial colonization phase and infection type [47].
While particular changes at genetic level in the mu-

tants were detected, a remarkable alteration of the ex-
pression profiles was noted in both mutants and field
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isolates, with overexpression of ribosomal protein syn-
thesis as well the down-regulation of genes involved in
global stress and regulatory mechanisms, metabolism of
amino acids (lysine, asparagine, threonine), secondary
metabolism, transport, virulence, chemotaxis, invasion
pathways and of unknown function. This might indicate
a higher cellular activity with lower virulence. Efflux
pumps previously involved in biocide tolerance were up-
regulated in some mutants and field isolates. They in-
cluded SugE, classically implicated in QACs resistance
and frequently found in Salmonella isolates of clinical
and animal origin [48, 49] or AcrAB [41, 50], whose
over-expression is known to contribute to antimicrobial
resistance yet at low-level.
This is the first study characterizing both the genomic

and expression profiles after antimicrobials challenge, al-
though the stress response after exposure to a high di-
versity of environmental stressors including biocides or
antibiotics has been tackled before. Cold-shock response,
allowing the survival of Listeria monocutogenes in the
presence of biocides was previously reported [10]. Simi-
larly to the mutants selected in BKC in this study,
antibiotic-resistant mutants obtained under different
metabolic conditions were related to attenuated
virulence due to low expression of the T3SS [51–53], or
mutation in transcriptional regulators. The RNA poly-
merase regulates the transcription of genes encoding
transport proteins and enzymes involved in the biosyn-
thesis of the metabolic intermediates of exopolysacchar-
ides, lipids, lipopolysaccharides, lipoproteins, flagella and
peptidoglycan. This protein is stress-induced and plays a
central role in the control of processes that involve phys-
ical interaction of an organism with the environment, as
colonization of host surfaces (virulence) or biofilm for-
mation [54]. Polymorphisms in genes coding for RNA
polymerase subunit α (rpoA, described in mutants se-
lected in QACs) [24, 50], and also σ factors (rpoS and
rpoD genes, related to high-level resistance towards TRI)
[55]) were previously reported. Despite other genes cod-
ing for RNA polymerase activity (rpoZ and rpoB) were
shown here to be up-regulated, it corroborates the im-
portance of this protein as a target implicated in intrin-
sic resistance to biocides [23, 55]. Conversely, down-
regulation of transcriptional and ribosomal genes were
previously detected after exposure to CHX [50]. In
addition, we report less transcripts of members of the
LuxR/UhpA and AraC family, the last one being
negative regulator of HilA, the key regulator of the SPI1
[35, 36]. Down-regulation of genes encoding virulence-
related proteins for several mutants might suggest a
lower pathogenicity.
The finding of similar transcriptomic changes found in

both biocide resistant mutants and field isolates with re-
duced susceptibility to biocides, suggests the involvement

of common general responses that include diverse alter-
ations in metabolic and chemotaxis pathways, protein syn-
thesis, cell envelope or regulation of pathogenicity-islands,
which has been reported in other studies analysing
biocide-induced mutants of Salmonella and other species
[9, 19, 56].

Conclusions
In summary, this study shows that growth of Salmonella
in the presence of selective concentrations of biocides or
antibiotics leads to the selection of mutants with variable
susceptibility to antimicrobials (“cross-resistance” or “col-
lateral sensitivity”-like phenotypes) which is consistent
with the “multiples target sites” hypothesis of most bio-
cidal agents [57, 58]. The results highlight the wide range
of pathways employed by Salmonella to counteract bio-
cides and achieve stasis/stress survival. Unlike to what has
been commonly reported, overexpression of AcrAB-like
pumps did not seem to be the main mechanism involved
in biocide tolerance. Detection of SNPs was not associated
with altered expression of related genes, making data from
genomic and transcriptomic analysis necessary for a com-
prehensive analysis of biocide-challenged strains. Finally,
most selected biocide-resistant mutants presented fitness
costs, an issue that might reduce their chances to spread
under non-selective conditions.

Additional files

Additional file 1: Figure S1. MIC distributions to triclosan,
chlorhexidine and benzalkonium chloride for 62 natural Salmonella
isolates. The number of Salmonella isolates with reduced susceptibility to
biocides analysed for gene expression are indicated above the arrows
and MIC susceptibility values. Colors are according biocide distributions.
(*) an isolate showed simultaneously reduced susceptibility to CHX and
BKC. Other 6 isolates more susceptible for biocides were analysed for
control (TRIS/CHXS/BKCS: 0.06-0.12/2-8/32-64 mg/L).Figure S2. XbaI
digested-chromosomal DNA PFGE of several Salmonella mutants and its
parental strain (5-35 s for 21 h).Figure S3. Growth curves of Salmonella
mutants and the parental strain in plain LB at 37 °C with shaking.
(DOCX 446 kb)

Additional file 2: Table S1. Differential gene expression of common
genes from LIMMA and SAM methods for mutants. (XLSX 48 kb)

Additional file 3: Table S2. Differential gene expression of common
genes from LIMMA and SAM methods for natural isolates. (XLSX 280 kb)
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