1,727 research outputs found

    Discordance in cathepsin B and cystatin C expressions in bronchoalveolar fluids between murine bleomycin-induced fibrosis and human idiopathic fibrosis

    Get PDF
    International audienceAbstractThe activity of cysteine cathepsin B increased markedly in lung homogenates and in bronchoalveolar lavage fluids (BALF) of the mouse model of bleomycin-induced lung fibrosis after 14 days of challenge. In contrast the level of the cysteine cathepsin inhibitor cystatin C was unaffected in BALF of wild-type and cathepsin B-deficient mice. Therefore, murine cystatin C is not a reliable marker of fibrosis during bleomycin-induced lung fibrosis. Current data are in sharp contrast to previous analysis carried on human BALF from patients with idiopathic pulmonary fibrosis, for which the level of cathepsin B remained unchanged while cystatin C was significantly increased

    Comorbidities of COPD

    Get PDF
    International audienceBy 2020, chronic obstructive pulmonary disease (COPD) will be the third cause of mortality. Extrapulmonary comorbidities influence the prognosis of patients with COPD. Tobacco smoking is a common risk factor for many comorbidities, including coronary heart disease, heart failure and lung cancer. Comorbidities such as pulmonary artery disease and malnutrition are directly caused by COPD, whereas others, such as systemic venous thromboembolism, anxiety, depression, osteoporosis, obesity, metabolic syndrome, diabetes, sleep disturbance and anaemia, have no evident physiopathological relationship with COPD. The common ground between most of these extrapulmonary manifestations is chronic systemic inflammation. All of these diseases potentiate the morbidity of COPD, leading to increased hospitalisations and healthcare costs. They can frequently cause death, independently of respiratory failure. Comorbidities make the management of COPD difficult and need to be evaluated and treated adequately. Extrapulmonary comorbidities are common in COPD and influence prognosis; we propose an exhaustive comorbidities revie

    Scalable downstream purification of recombinant adeno-associated viral vectors

    Get PDF
    Scalable manufacturing technologies are essential for ensuring modern medicines can be produced to meet the needs of clinical trials, process development, and commercial manufacture. Recent advances in in vivo gene therapies have resulted in multiple regulatory approvals of rAAV vectors for gene transfer in humans. These vectors can be produced using transient transfection of mammalian cells, baculovirus infection of insect cells or produced via engineered stable producer cells. These production methods are performed in single-use bioreactors and utilize other scalable technologies as used in commercial monoclonal antibody manufacture. In this work, we evaluated the use of existing single-use filtration and separation technologies for downstream purification of an rAAV5 viral vector. rAAV5 vector was produced by transient transfection of HEK293 cells in the Pall iCELLis® Nano bioreactor. Bioreactor harvest lysis material was clarified using direct flow filtration with both depth and sterilizing grade filters. The product was concentrated 10x using 100kD OmegaTM flat-sheet tangential flow-filtration (TFF) before primary purification using affinity chromatography. The rAAV5 vector was then polished using Mustang® Q membrane chromatography to enrich for full capsids. A second TFF step was performed to concentrate and buffer exchange with flat sheet TFF with the same 100KD Omega membrane. Final sterile filtration was performed using Supor® EKV validated sterilizing grade filters. All downstream unit operations resulted in acceptable performance. Feasibility of a complete downstream process was established with a theoretical whole process yield of ~25%. This process results in a very low contaminant profile as host cell protein (HCP) and host cell DNA were reduced to near and below the assays’ limits of quantitation during purification. Of particular interest, Mustang Q polishing resulted in retention of only ~10% of total capsids, while recovering ~50% of full capsids enriching the ratio of full capsids to empty capsids by 4.5 fold

    Sociopolitical Participation Among Marginalized Youth: Do Political Identification and Ideology Matter?

    Get PDF
    Engaging youth in the political system has promise for creating social change and ensuring the future of our democracy. Sociopolitical participation—individual and/or collective action to facilitate change—may be biased towards more liberal or Democratic views, which emphasize reform to create social equity. The aim of this study is to test if youth who vary in political ideology (i.e., conservative, liberal) and political identification (i.e., Republican, Democrat) participate at different levels and whether this measurement of sociopolitical participation is in fact biased. These issues were examined among 237 youth attending a large Midwestern high school who generally identified with historically marginalized groups. Results suggest that youth identifying as Republican exhibited slightly higher levels of participation, and that items were not biased by political ideology or identification. Further, political ideology and identification explained less than 5% of the variance in sociopolitical action, suggesting it is largely independent of political leaning

    Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Get PDF
    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease

    Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis

    Get PDF
    Membrane-bound proteinase 3 (PR3(m)) is the main target antigen of anti-neutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis, a systemic small-vessel vasculitis. Binding of ANCA to PR3(m) triggers neutrophil activation with the secretion of enzymatically active PR3 and related neutrophil serine proteases, thereby contributing to vascular damage. PR3 and related proteases are activated from pro-forms by the lysosomal cysteine protease cathepsin C (CatC) during neutrophil maturation. We hypothesized that pharmacological inhibition of CatC provides an effective measure to reduce PR3(m) and therefore has implications as a novel therapeutic approach in granulomatosis with polyangiitis. We first studied neutrophilic PR3 from 24 patients with Papillon-Lefevre syndrome (PLS), a genetic form of CatC deficiency. PLS neutrophil lysates showed a largely reduced but still detectable (0.5-4%) PR3 activity when compared with healthy control cells. Despite extremely low levels of cellular PR3, the amount of constitutive PR3(m) expressed on the surface of quiescent neutrophils and the typical bimodal membrane distribution pattern were similar to what was observed in healthy neutrophils. However, following cell activation, there was no significant increase in the total amount of PR3(m) on PLS neutrophils, whereas the total amount of PR3(m) on healthy neutrophils was significantly increased. We then explored the effect of pharmacological CatC inhibition on PR3 stability in normal neutrophils using a potent cell-permeable CatC inhibitor and a CD34(+) hematopoietic stem cell model. Human CD34(+) hematopoietic stem cells were treated with the inhibitor during neutrophil differentiation over 10 days. We observed strong reductions in PR3(m), cellular PR3 protein, and proteolytic PR3 activity, whereas neutrophil differentiation was not compromised
    corecore