9,332 research outputs found

    Rapport scientifique de l'expédition belge à la Grande Barrière d'Australie en 1967. Sédimentologie 1: noircissement par pyritisation des tests de grands foraminifères benthiques actuels

    Get PDF
    This work tends to approach and define the earliest phases of fossilisation by pyritisation of the tests of two large benthic foraminifera coming from the south end of the Great Barrier Reef Australia

    Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns

    Get PDF
    International audienceAlpine valleys represent some of the most important crossroads for international heavy-duty traffic in Europe, but the full impact of this traffic on air quality is not known due to a lack of data concerning these complex systems. As part of the program "Pollution des Vallées Alpines" (POVA), we performed two sampling surveys of polycyclic aromatic hydrocarbons (PAHs) in two sensitive valleys: the Chamonix and Maurienne Valleys, between France and Italy. Sampling campaigns were performed during the summer of 2000 and the winter of 2001, with both periods taking place during the closure of the "Tunnel du Mont-Blanc". The first objective of this paper is to describe the relations between PAH concentrations, external parameters (sampling site localization, meteorological parameters, sources), and aerosol characteristics, including its carbonaceous fraction (OC and EC). The second objective is to study the capacity of PAH profiles to accurately distinguish the different emission sources. Temporal evolution of the relative concentration of an individual PAH (CHR) and the PAH groups BghiP+COR and BbF+BkF is studied in order to differentiate wood combustion, gasoline, and diesel emissions, respectively. The results show that the total particulate PAH concentrations were higher in the Chamonix valley during both seasons, despite the cessation of international traffic. Seasonal cycles, with higher concentrations in winter, are also stronger in this valley. During winter, particulate PAH concentration can reach very high levels (up to 155 ng.m-3) in this valley during cold anticyclonic periods. The examination of sources shows the impact during summer of heavy-duty traffic in the Maurienne valley and of gasoline vehicles in the Chamonix valley. During winter, Chamonix is characterized by the strong influence of wood combustion in residential fireplaces, even if the temporal evolution of specific PAH ratios are difficult to interpret. Information on sources given by PAH profiles can only be considered in qualitative terms

    A combination of particle filtering and deterministic approaches for multiple kernel tracking.

    Get PDF
    International audienceColor-based tracking methods have proved to be efficient for their robustness qualities. The drawback of such global representation of an object is the lack of information on its spatial configuration, making difficult the tracking of more complex motions. This issue is overcome by using several kernels weighting pixels locations. In this paper a multiple kernels configuration is proposed and developed in both probabilistic and deterministic frameworks. The advantages of both approaches are combined to design a robust tracker allowing to track location, size and orientation of the object. A visual servoing application in tracking a moving object validates the proposed approach

    Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion.

    Get PDF
    Fermentation in the large bowel has been postulated to play a protective role against colon cancer. Hydrogen and methane are end products of this fermentation process and are absorbed into the bloodstream and excreted via expired air in the breath. Breath levels of hydrogen and, to a lesser extent, methane correlate strongly with colonic fermentation and may serve as useful biomarkers for this process. In a preliminary study to assess the usefulness of these two markers in epidemiologic studies, we followed the hourly excretion of the two gases in expired alveolar air for 48 hr in 20 healthy subjects, using a Quintron gas chromatograph equipped with a solid-state detector specific for reducing gases. All subjects excreted hydrogen, but 71% did not excrete methane. Possible atmospheric contamination of the samples was corrected for on the basis of breath carbon dioxide levels. A clear circadian pattern of excretion was observed for breath hydrogen, with a decrease during the early morning followed by a progressive increase during the rest of the day. Methane excretion was constant throughout the day. This study shows that four samples collected at convenient times (0600, 1300, 1800, and 2200 hr) are optimal to characterize individuals by their breath excretions of hydrogen and methane during a 24-hr period

    Reducing complexity and unidentifiability when modelling human atrial cells

    Get PDF
    Mathematical models of a cellular action potential in cardiac modelling have become increasingly complex, particularly in gating kinetics which control the opening and closing of individual ion channel currents. As cardiac models advance towards use in personalised medicine to inform clinical decision-making, it is critical to understand the uncertainty hidden in parameter estimates from their calibration to experimental data. This study applies approximate Bayesian computation to re-calibrate the gating kinetics of four ion channels in two existing human atrial cell models to their original datasets, providing a measure of uncertainty and indication of potential issues with selecting a single unique value given the available experimental data. Two approaches are investigated to reduce the uncertainty present: re-calibrating the models to a more complete dataset and using a less complex formulation with fewer parameters to constrain. The re-calibrated models are inserted back into the full cell model to study the overall effect on the action potential. The use of more complete datasets does not eliminate uncertainty present in parameter estimates. The less complex model, particularly for the fast sodium current, gave a better fit to experimental data alongside lower parameter uncertainty and improved computational speed

    German Orientalism in the Age of Empire: Religion, Race and Scholarship

    Get PDF
    Nineteenth-century studies of the Orient changed European ideas and cultural institutions in more ways than we usually recognise. ‘Orientalism’ certainly contributed to European empire-building, but it also helped to destroy a narrow Christian-classical canon. This book provides the first synthetic and contextualised study of German Orientalistik, a subject of special interest because German scholars were the pace-setters in oriental studies between about 1830 and 1930, despite entering the colonial race late and exiting it early. The book suggests that we must take seriously German orientalism’s origins in Renaissance philology and early modern biblical exegesis and appreciate its modern development in the context of nineteenth- and early-twentieth-century debates about religion and the Bible, classical schooling, and Germanic origins. Introduces readers to a host of iconoclastic characters and forgotten debates,seeking to demonstrate both the richness of this intriguing field and its indebtedness to the cultural world in which it evolved

    Correlation Effects in Nuclear Transparency

    Get PDF
    The Glauber approximation is used to calculate the contribution of nucleon correlations in high-energy A(e,e′N)A(e,e'N) reactions. When the excitation energy of the residual nucleus is small, the increase of the nuclear transparency due to correlations between the struck nucleon and the other nucleons is mostly compensated by a decrease of the transparency due to the correlations between non detected nucleons. We derive Glauber model predictions for nuclear transparency for the differential cross section when nuclear shell level excitations are measured. The role of correlations in color transparency is briefly discussed.Comment: 24 pages revtex, 4 uuencoded PostScript Figures as separate fil

    Contact angles on a soft solid: from Young's law to Neumann's law

    Get PDF
    The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young's relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles different from that predicted by Neumann's law, which applies when the drop is floating on another liquid. Here we derive an elasto-capillary model for contact angles on a soft solid, by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate that the limit of vanishing elastic modulus yields Neumann's law or a slight variation thereof, depending on the force transmission in the solid surface layer. The change in contact angle from the rigid limit (Young) to the soft limit (Neumann) appears when the length scale defined by the ratio of surface tension to elastic modulus γ/E\gamma/E reaches a few molecular sizes
    • …
    corecore