11,446 research outputs found

    Sharp crossover from composite fermionization to phase separation in mesoscopic mixtures of ultracold bosons

    Get PDF
    We show that a two-component mixture of a few repulsively interacting ultracold atoms in a one-dimensional trap possesses very different quantum regimes and that the crossover between them can be induced by tuning the interactions in one of the species. In the composite fermionization regime, where the interactions between both components are large, none of the species show large occupation of any natural orbital. Our results show that by increasing the interaction in one of the species, one can reach the phase-separated regime. In this regime, the weakly interacting component stays at the center of the trap and becomes almost fully phase coherent, while the strongly interacting component is displaced to the edges of the trap. The crossover is sharp, as observed in the in the energy and the in the largest occupation of a natural orbital of the weakly interacting species. Such a transition is a purely mesoscopic effect which disappears for large atom numbers.Comment: 5 pages, 3 figure

    Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures

    Get PDF
    We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlation evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased, for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.Comment: 18 pages, 8 figure

    A topological charge selection rule for phase singularities

    Get PDF
    We present an study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified. The role played by the underlying symmetry is emphasized. An effective model describing the short range dynamics of the vortex clusters has been designed. A method to engineer any desired configuration of clusters of phase singularities is proposed. Its flexibility to create and control clusters of vortices is discussed.Comment: 4 pages, 3 figure

    Confining Flux Tubes in a Current Algebra Approach

    Full text link
    We describe flux tubes and their interactions in a low energy sigma model induced by SU(Nf)→SO(Nf)SU({N_f}) \rightarrow SO({N_f}) flavor symmetry breaking in SO(Nc)SO(N_c) QCD. Unlike standard QCD, this model allows gauge confinement to manifest itself in the low energy theory, which has unscreened spinor color sources and global Z2Z_2 flux tubes. We construct the flux tubes and show how they mediate the confinement of spinor sources. We further examine the flux tubes' quantum stability, spectrum and interactions. We find that flux tubes are Alice strings, despite ambiguities in defining parallel transport. Furthermore, twisted loops of flux tube support skyrmion number, just as gauged Alice strings form loops that support monopole charge. This model, while phenomenologically nonviable, thus affords a perspective on both the dynamics of confinement and on subtleties which arise for global Alice strings.Comment: 29 pages (REVTEX) plus 6 figures, two corrections in the final section and added reference

    Four-point functions and kaon decays in a minimal AdS/QCD model

    Full text link
    We study the predictions of holographic QCD for various observable four-point quark flavour current-current correlators. The dual 5-dimensional bulk theory we consider is a SU(3)L×SU(3)RSU(3)_L \times SU(3)_R Yang Mills theory in a slice of AdS5AdS_5 spacetime with boundaries. Particular UV and IR boundary conditions encode the spontaneous breaking of the dual 4D global chiral symmetry down to the SU(3)VSU(3)_V subgroup. We explain in detail how to calculate the 4D four-point quark flavour current-current correlators using the 5D holographic theory, including interactions. We use these results to investigate predictions of holographic QCD for the ΔI=1/2\Delta I = 1/2 rule for kaon decays and the BKB_K parameter. The results agree well in comparison with experimental data, with an accuracy of 25% or better. The holographic theory automatically includes the contributions of the meson resonances to the four-point correlators. The correlators agree well in the low-momentum and high-momentum limit, in comparison with chiral perturbation theory and perturbative QCD results, respectively.Comment: Published version, title changed to conform with Journal format, references and clarifying remarks added, 40 pages, 5 figure

    Fermions on half-quantum vortex

    Full text link
    The spectrum of the fermion zero modes in the vicinity of the vortex with fractional winding number is discussed. This is inspired by the observation of the 1/2 vortex in high-temperature superconductors (Kirtley, et al, Phys. Rev. Lett. 76 (1996) 1336). The fractional value of the winding number leads to the fractional value of the invariant, which describes the topology of the energy spectrum of fermions. This results in the phenomenon of the "half-crossing": the spectrum approaches zero but does not cross it, being captured at the zero energy level. The similarity with the phenomenon of the fermion condensation is discussed.Comment: In revised version the discussion is extended and 4 references are added. The paper is accepted for publication in JETP Letters. 10 pages, LaTeX file, 3 figures are available at ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96004.p

    Honeybee-like collective decision making in a kilobot swarm

    Full text link
    Drawing inspiration from honeybee swarms' nest-site selection process, we assess the ability of a kilobot robot swarm to replicate this captivating example of collective decision-making. Honeybees locate the optimal site for their new nest by aggregating information about potential locations and exchanging it through their waggle-dance. The complexity and elegance of solving this problem relies on two key abilities of scout honeybees: self-discovery and imitation, symbolizing independence and interdependence, respectively. We employ a mathematical model to represent this nest-site selection problem and program our kilobots to follow its rules. Our experiments demonstrate that the kilobot swarm can collectively reach consensus decisions in a decentralized manner, akin to honeybees. However, the strength of this consensus depends not only on the interplay between independence and interdependence but also on critical factors such as swarm density and the motion of kilobots. These factors enable the formation of a percolated communication network, through which each robot can receive information beyond its immediate vicinity. By shedding light on this crucial layer of complexity --the crowding and mobility conditions during the decision-making--, we emphasize the significance of factors typically overlooked but essential to living systems and life itself.Comment: 19 pages, 8 figures, 6 appendix figures, 3 supplementary figure

    Power, norms and institutional change in the European Union: the protection of the free movement of goods

    Get PDF
    How do institutions of the European Union change? Using an institutionalist approach, this article highlights the interplay between power, cognitive limits, and the normative order that underpins institutional settings and assesses their impact upon the process of institutional change. Empirical evidence from recent attempts to reinforce the protection of the free movement of goods in the EU suggests that, under conditions of uncertainty, actors with ambiguous preferences assess attempts at institutional change on the basis of the historically defined normative order which holds a given institutional structure together. Hence, path dependent and incremental change occurs even when more ambitious and functionally superior proposals are on offer

    How to create Alice string (half-quantum vortex) in a vector Bose-Einstein condensate

    Full text link
    We suggest a procedure how to prepare the vortex with N=1/2 winding number -- the counterpart of the Alice string -- in a Bose--Einstein condensate with hyperfine spin F=1. Other possible vortices in Bose-condensates are also discussed.Comment: RevTex file, 3 pages, no figures, extended version submitted to JETP Letter

    Comment on ``the Klein-Gordon Oscillator''

    Get PDF
    The different ways of description of the S=0S=0 particle with oscillator-like interaction are considered. The results are in conformity with the previous paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p
    • 

    corecore