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Abstract

We present the complete phase diagram for one-dimensional binary mixtures of
bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with
direct numerical diagonalization for a small number of atoms, which permits us
to quantify quantum many-body correlations. The quantum Monte Carlo method
is used to calculate energies and density profiles for larger system sizes. We
study the system properties for a wide range of interaction parameters. For the
extreme values of these parameters, different correlation limits can be identified,
where the correlations are either weak or strong. We investigate in detail how the
correlations evolve between the limits. For balanced mixtures in the number of
atoms in each species, the transition between the different limits involves
sophisticated changes in the one- and two-body correlations. Particularly, we
quantify the entanglement between the two components by means of the von
Neumann entropy. We show that the limits equally exist when the number of
atoms is increased for balanced mixtures. Also, the changes in the correlations
along the transitions among these limits are qualitatively similar. We also show
that, for imbalanced mixtures, the same limits with similar transitions exist.
Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible
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limit and a phase-separated one, resembling those expected with a mean-field
approach.

Keywords: bosonic mixtures, Tonks—Girardeau gas, few-atom systems, macro-
scopic superpositions

1. Introduction

The fascinating physics of interpenetrating superfluids has recently become a topic of great
interest due to the experimental realization of multi-component, atomic Bose—Einstein
condensates [1-5]. In the weakly interacting regime, these mixtures are well described by
coupled mean-field Gross—Pitaevskii equations (GPEs), and within this framework, processes
that lead to phase separation are well described [6—14].

While mean-field theories allow us to study weakly correlated systems, it is also important
and interesting to examine quantum mixtures in strongly correlated regimes. In these regimes,
analytic solutions can often be obtained only in limiting cases. Rather appealing results occur in
strongly correlated regimes when the dimensionality is reduced. For quasi-one-dimensional
(1D) gas mixtures, one finds that the Luttinger liquid theory predicts many interesting effects,
which include de-mixing for repulsive interactions or spin-charge separation analogous to that
found in 1D electronic quantum systems [15—18]. Other relevant effects include the presence of
polarized ground states, which allow us to view the relative spatial oscillations as spin waves
[19-23] and which have been experimentally observed [24-26].

Very strong correlations for single-component bosons are realized in the Tonks—Girardeau
(TG) gas [27-29], which was recently observed experimentally [34, 35]. Bosonic mixtures in
the strongly interacting limit have features common with the TG gas, and their ground-state
wavefunction can be obtained analytically in certain interaction limits [36—38]. Experimental
advances on Feshbach and confinement-induced resonances in recent years have made it
possible to control both the intra-species interactions and the inter-species interactions over a
wide range of parameters [39-41]. In the strongly interacting limit, a number of relevant
phenomena have been described, including phase separation [15-17, 42], composite
fermionization [43-45], a sharp crossover between both limits [46], and quantum
magnetism [47].

In this work we focus on mixtures where the number of atoms is small. The recent
successful experimental trapping of ensembles of a few atoms [48—52] has inspired an intense
theoretical effort [5S3—67], and very recently even systems with SU(N) symmetry and N > 2
have been experimentally realized [68]. For mixtures of a few atoms, direct diagonalization
methods [31, 42, 45] can be used together with other numerical methods efficient for larger
numbers of atoms, like multiconfigurational Hartree—Fock methods (MCTDH) [70], density
functional theory (DFT) [44], or quantum diffusion Monte Carlo (DMC) [69]. In the present
work, we use direct numerical diagonalization to study the ground-state properties of a mixture
of ultracold bosons confined in a 1D trap over a wide range of correlations regimes, determined
by the scattering properties between the atoms. These are supplemented by DMC calculations to
confirm trends for systems with larger particle numbers. While the extreme cases in which all
correlations are either weak or strong are well known, here we calculate and discuss the full
phase diagram and especially the transitions between the different regimes.
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We study the ground-state wavefunction and pay particular attention to the one- and two-
body correlations in the extreme limits and across the transitions between them. The quantum
correlations between both components are characterized by means of the von Neumann entropy.
This allows us to show that close to the crossover between the composite fermionization and
phase separation, the ground state exhibits strong correlations between the two bosonic
components.

Our paper is organized as follows. In section 2 we introduce the model Hamiltonian and a
general analytical ansatz for the ground-state wavefunction. Focusing first on balanced
mixtures, we discuss in section 3 the ground-state properties in terms of the densities, the
coherence, the energies, the one- and two-body correlations, and the von Neumann entropy. In
section 4, we then present results on how the ground-state properties change when one
component is larger than the other, and finally summarize all our results in section 5.

2. Model hamiltonian

Let us consider a mixture of two bosonic components, A and B, with a small, fixed number of
atoms in each component, Ny and Ng. We assume that the two components are two different
hyperfine states of the same atomlc spec:les of mass m and that they are trapped in the same, 1D
parabolic potential V (x) = ma) Zx2. At low temperatures, all scattering processes between the
atoms are assumed to be described by contact interactions vy = =g 0(x; — xj),
pB = g6 (y; — y;), and vhB = = g6 (x; — y;), where the positions of atoms of species A(B)
are given by the coordinates x;(y;). The 1D intra- and inter-species coupling constants gy g,
and g,p are assumed to be tunable independently by means of confinement-induced resonances
[39]. We will restrict our study to repulsive interactions. The many-body Hamiltonian is
H = Hy + Hg + Hiy, with:

N . | &
Ha = z T ol + V) |+ zviﬁt(xj, Xj),

j=1L X 1 i<
N (RS S. | &
HBZZ T man? + Vo) [+ Zvim()’w Vi)

i=1] j<i’

Na Np

= Z Z il () = yp). )

There are three coupling constants g,, gz, ap, €ach of them ranging from g = 0 for the
ideal Bose gas interaction to g — oo for a strong Tonks—Girardeau interaction. This defines
eight limits schematically shown in figure 1. The composite fermionization limit is reached
when g,5 — oo, with the other coupling constants vanishing [43-45]. We termed TG-BEC gas
a system with one of the intra-species coupling constants large, while other coupling constants
vanish [42]. If one of the intra-species coupling constants, together with the inter-species
coupling constant, are large, the phase separation limit is reached [15-17, 42]. Finally, if all
coupling constants tend to infinity, the wavefunction is known exactly and can be mapped to
that of an ideal Fermi gas [36]. We call this limit full fermionization. Note that for a system of
two A atoms and one B atom, the order in which the limits are taken (i.e., if one first takes



New J. Phys. 16 (2014) 103004 M A Garcia-March et al

Figure 1. Schematic of all regimes in the few-atom limit. The following abbreviations
are used. BEC: Bose—FEinstein condensate; TG: Tonks—Girardeau gas; CP: composite
fermionization; PS: phase separation; FF: full fermionization.

gy — oo and then g,z — oo or v.v.) determines the particular ground state that is reached [38].
In the following we will calculate and discuss the complete phase diagram, which includes the
transitions between these limits. To restrict the large number of free parameters, we note that the
transition between TG and the phase separation limit is symmetric when switching the values of
g and g, and we can therefore circumscribe the discussion to the situation where g vanishes,
and change g,. In the following, we will use harmonic oscillator units and scale all lengths in
units of oscillator length ag = /7%/(mw) and all energies in units of level spacing /Zw.

To solve the Hamiltonian (1), we use two different numerical approaches: direct
diagonalization [42] and DMC [69]. The former allows us to calculate the full density matrix of
the system and therefore gives us access to all single- and multi-particle correlations. However,
since it is limited to small particle numbers, the latter will be used to check for trends when the
number of particles becomes larger. While DMC is well described in the literature, let us briefly
explain our approach to direct diagonalization. For this we expand the second quantized field
operators into eigenfunctions ¢, (x) of the single-particle (SP) Hamiltonian for the harmonic
oscillator:

Pa(r) = Yan, (), and  P(x) = Y b, (x), 2)
n=1 n=1

where the creation and annihilation operators d; and d satisfy the bosonic commutation
relations [dy, &,T] = ou, lax, a;] = [&,j, &,T] = Oand similarly for l;,j and l;k, while all
commutators between operators belonging to different species vanish. Here, nyp) is the
number of modes used in the expansion. The Hamiltonian can then be written as [46]:

. 1 1
Ha=Yad/a ﬁw(— +k)+ — Y 4] 4] a4l Vi, 3
A ; s 5 22 kK K. 3)

klmn
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klmn
where:
AB) __ * *
VAR = gam [ dx b 0 66,04, 00, (6)
Vith = gan [ 4 47 @ (1,04, ). )
The ground state can be expressed in terms of Fock vectors ¥, = Z,QZ , ¢iP; with:
A. N 1 A IlB i
®, = D,.ADl.B(af)N‘:’..(a,jA) ’(bl ) 1...(b,f3) b, @®)
where D/®) = (Nf},(B) ! N,ﬁ\EBB)),') , and @ is the vacuum. The occupation numbers of the
(ng) modes for each component are given by fo,- o ,,A ; (Nl iovees Ny, B ). The dimension of the

Hilbert Space is Q= QA.QB with -QA(B) = (NA(B) + nA®B) — 1)!/[NA(B)!(nA(B) - 1)'] Note
that Q2 increases exponentially with the number of particles and modes, which is the reason why
the numerical solution using this approach is restricted to a small number of atoms.

A good ansatz for the unnormalized ground-state wavefunction of the mixture, when
gg = 0 and outside of the phase-separated regime, can be constructed using the solution for
non-interacting atoms in the harmonic trap @ (X) = exp [— Zx,-z/Z], X={x;}andY = {y;}, as
in [46]:

N Na N
v X, V)=o) @) [] | -x;—as] [IT] |-y —am| ©
Jj<k k j

Here the 1D s-wave scattering length a, for the intra-species interactions and a g for the inter-
species interactions are related to the 1D coupling constants as g, = —2/42%/(may) and
gnp = —2/%/(maxp), and we assume that both coupling constants are non-negative,
corresponding to repulsive interactions. For practical purposes, we find that the coupling
constant g = 20 is close enough to the infinite limit, and therefore we use this value in the direct
diagonalization method for describing the large coupling constant limits.

3. Balanced mixtures

In the following, we will first concentrate on systems in which both components have the same
particle number. Unless otherwise stated, we will use Na = Ng = 2.

3.1. Densities

The main feature of the density evolution in this system is the occurrence of phase separation
for increasing inter-species interactions. However, this process takes two, fundamentally
different, forms: in the composite fermionization limit, atoms of different species avoid each
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Figure 2. Upper (lower) row shows the density of the A (B) species, for Ny = Ng = 2.
Panels (a—d) show the evolution for increasing g,, starting from the BEC-BEC limit
(panels (a) and (b), g, = gg = 0) or the TG-BEC limit (panels (c) and (d), g, = 20,
gg = 0). Panels (e) and (f) display the transition between the composite fermionization
and the phase-separated limits [gz = 0, g g = 20].

other, even though the species’ densities still occupy the same space, whereas in the phase
separation limit the overlap of the respective densities goes to zero.

The density along the transition from the BEC-BEC limit (all couplings small) to the
composite fermionization limit (g, large) is shown in figures 2(a) and (b). There are crucial
differences in the evolution of the density along the transition from the TG-BEC to the phase
separation limit (figures 2(c) and (d)). One immediately notices that the transition into the
composite fermionization state happens at a finite value of g,z ~ 2, whereas the transition to
the phase-separated regime happens already for very small values of g,5. Also, the final states
reached in the composite fermionization or the phase separation limit are very different.

This difference in the final states can be understood by looking at the one-body density
matrix (OBDM) given by:

Pt ) = Ny [ dez - day, dy, - dyy, #F (10)

=) S @f 6L (11)

with a similar expression for plB (x, x"). The decomposition in terms of natural orbitals fi(x) of
the OBDM and their corresponding occupations A} is given in equation (11). The densities
shown in figure 2 are the diagonals of these matrices, calculated with direct diagonalization. As
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Figure 3. Largest occupation numbers of the natural orbitals for (a) the A species, (",
and (b) the B species, 4. (c) von Neumann entropy for Ny = Ng = 2 as a function of
gap for g, = 0 (thick line) and g, — oo (thin line). (d) von Neumann entropy as a
function of g, for the cases g 5 =2, 4,20 (dash-dotted, dashed, and solid line,
respectively) for Ny = Ng = 2.

discussed in reference [46], the OBDMs of both components in the composite fermionization
limit are identical and show two peaks. Conversely, in the phase separation limit, the OBDM
of B shows a single peak located at the center of the trap, while the OBDM for A shows two
peaks at the edges. The largest used value of the coupling constant g = 8 is large enough so
that the density profiles shown in figure 2 are practically the same as for the infinite coupling
constant.

Finally, the transition from the composite fermionization to the phase-separated regime is
shown in figures 2(e) and (f). One can see that the spatial separation of the clouds happens for a
finite value of g,. At the transition between both limits, the OBDMs of both species show a
complicated structure, which we discuss in detail in subsection 3.4.

3.2. Coherence and entanglement

Since increasing the coupling constant will drive the system from the weakly to the strongly
correlated regime, the coherence is a good quantity for identifying different regions in the phase
diagram. It can be characterised by the largest eigenvalue of the OBDMs (11), 4®, which
provides the largest occupation of a natural orbital. In our numerical calculations with direct
diagonalization, we normalize the OBDM to 1 instead of the number of atoms. In figures 3(a)
and (b) we show the largest occupation numbers for the A and the B species, respectively, over
the whole range of interactions. Note that all eigenvalues of each component sum up to 1, in
accordance with the chosen normalization.
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One can see from figure 3(a) that the coherence in the A species decreases monotonically
along the transition from the BEC-BEC (/10A = 1) to the TG-BEC (XOA ~ 0.7) limit, as well as
to the composite fermionization limit (A¢* ~ 0.55). However, the transition for increasing gx at
a finite g, shows that a maximum of coherence is reached for finite values of g, ~ 5, which
corresponds roughly to the value where the cloud de-mixing happens (see figures 2(e) and (f)).
This maximum in coherence within species A is very surprising, as usually the presence of
interactions is thought of as detrimental to coherence. Here, however the presence of
interactions within the A component to a certain degree ‘counterbalance’ the interactions
between the species and therefore allows us to re-establish a higher degree of coherence again.
Note that after the de-mixing transition, the coherence within species A goes down again, which
is a clear indication that the enhancement is somehow mediated using the overlap with
species B.

As expected, species B shows a large degree of coherence in all limits, except the
composite fermionization one (see figure 3(b)). However, the re-establishment of coherence
along the transition from composite fermionization to the phase-separated limit happens over a
definite and narrow region, which corresponds to the area in which the coherence in species A
shows a maximum.

One might at this point wonder how the transition to phase separation manifests itself
during the transition from the TG-BEC to the phase-separated limit, as no obvious signature is
visible in the coherence phase diagram. The answer is that phase separation happens already for
small values of g,5, which can be seen in figure 2(c).

It is important to observe that there are no phase transitions in the whole phase diagram.
The ground-state energy is always a continuous and smooth function of the parameters so that
the transition between the different regimes is of a crossover type.

Closely related to the coherence in the sample is the entanglement between the two
components. This can be quantified by calculating the von Neumann entropy,
SA = —Tr( palnp A), which is a function of the reduced density matrix for a single component:

pa=Trsp = 3 (P %) (%] ©). (12)

1

Here p = %) (¥ is the density matrix, ¥, is the system ground state, and:

B Bl T NP gt \ Ny i
(pi :Di bl an (p() (13)

is the Fock vector for species B only. This matrix is obtained by means of direct
diagonalization. In figure 3(c) we show the von Neumann entropy S, along the transition
between BEC-BEC and composite fermionization. S5 can be seen to approach a constant value
as g,p 1s increased, corresponding to the large inter-species correlations present in the
composite fermionization. The same plot also shows S, along the transition between TG-BEC
and the phase-separated limit. The two species are less correlated throughout this transition, but
still S5 saturates to a constant value in the phase-separated limit. In figure 3(d) we plot S5 for
different values of g,z when g, is tuned from zero to a large value. When g,z = 20, this
corresponds to the transition between composite fermionization and a phase-separated gas. We
observe a peak which coincides with the crossover between both limits. This peak disappears as
gag 18 reduced, as observed in the curves for g 5 = 4, 2 in figure 3(d). For g,g = 0, S4 is zero
for every value of g,.
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Figure 4. Panel (a) shows the average interaction energy of species A, (U, ), and panel
(b) the average interaction energy between species A and B, (Uag ). Here No = N = 2,
and gz = 0. Panel (c) reports the energy per atom as a function of g, for
gag = 0, 2, 4, 20 (thick solid, dash-dotted, dashed, and thin solid lines, respectively)
for No = Ng = 2. The red crosses overlapping with the black thick line represent the
analytical result [53]. (d) Energy per atom as a function of g,g for g, = 0 (solid line)
and g, — oo (dashed line), for Ny = Ng = 2. Panels (e) and (f) represent the energy per
atom for Ny = Ng = 10, with the same layout as figures (c) and (d), respectively. In
panels (c)—(f), the green circles indicate the energy in the BEC-BEC limit. In panels (d)
and (f), the red squares indicate the energy in the TG-BEC limit.

3.3. Interaction energies

An interesting question is how the interaction energy changes across the transitions between the
different limits. The average interaction energy in species A is:

(Ua) = { 5 D dai andn Vit ). (14)
klmn

We display this energy in figure 4(a). For zero g, there are no interactions between A atoms,
and (U, ) is equal to zero. By increasing g,, the energy (U ) first grows as correlations are
being introduced. For larger repulsion, particles avoid each other, which leads to very strong
correlations, and the interaction energy drops down to zero. Starting from the BEC-BEC
region, this is a long process, however; for a finite value of g,y this happens over a very well
defined domain of the parameter g,, located at small values of g,. Note that for g, = 0 and in
the presence of interaction with species B, the particles in species A are much more localized
than for g, = 0. Therefore, small increases in the interaction strength g, lead to strong
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increases in the interaction energy (U, ). This is also consistent with the maximum found in the
correlation strength within component A.

The interaction energy goes to zero in the TG-BEC limit, which is the behaviour expected
for a single component gas [30-33], as the increased energy is now stored in the single particle
harmonic oscillator energies. During the whole process the total energy is increased from:

1
EBEcBEC = E(NA + Ng) (15)
to
_1 2
EtcBEC = E(NB + NA)- (16)

The energy for Ny = Ng = 2 is shown in figure 4(c). The energy obtained by the direct
diagonalization and DMC methods coincides. For no interactions between different species,
gag = 0, and the energy can be expressed as E = 7w + E,(g, ), where E, (g, ) is the energy of
two trapped particles interacting with the coupling constant g, [53]. In order to prove that the
described limits exist in larger systems, we calculate the energy for Ny = Ng = 10 particles
with the DMC method.

The energy per particle in the BEC-BEC limit (15) does not depend on the number of
particles, Eggcgec/N = 1/2. We show this in figures 4(c) and (e), with green circles for
N4y = Ng =2 and 10.

In figures 4(d) and (f), we depict the energy per particle as a function of g,p, starting from
the BEC-BEC (solid line) and the TG-BEC (dashed line) limits. Here the green circles (red
squares) indicate the energy per atom in the BEC-BEC (TG-BEC) limit. The energy in the TG—
BEC limit given by equation (16) is Epggec/N = 3/4 for No» = Ng = 2 and Etgggc/N = 11/4
for No = Ng = 10. In the transition from the BEC-BEC limit to the composite fermionization
one, the energy saturates to a certain value for which we do not have an analytical prediction.
Also, a monotonic behavior is observed in the transition from the TG-BEC to the phase
separation limit (figures 4(d) and (f)).

The average interaction energy between both species, given by:

(Unp) = < 3a{b by Anvk‘?n?n>, (17)
klmn

is important to quantify the transition to the composite fermionization or the phase-separated
regime. The interaction energy rapidly increases from zero to a maximum at g,z ~ 2 (see
figure 4(b)) and decreases again toward zero for g,z — oo. For g, = 0, this corresponds to
building up strong correlations between the particles of different species in the composite
fermionization limit, whereas in the limit of large g,, this reflects the transition to a
macroscopic phase separation of the two components.

3.4. Correlation matrices

Since in the presence of strong interactions the system has non-trivial many-body correlations,
it is interesting to look not only at single-particle densities, but also at pair-wise correlation
functions. The single-particle densities are quantified by the OBDM (equation (10)). For
particles of the same species, the two-particle correlations are quantified by the two-body

10
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distribution function (TBDF):
P31, 32) = Na(Na = 1) [[dvy-oeduy, dy oy, 9P, (18)

with an analogous expression for B. If the two atoms stem from different species, their pair-wise
correlations are captured in the cross two-body distribution function (CTBDF) given by:

p 2B (x1, ) =Na NB/dxz---deAdyz---dyNB . (19)

Both functions are proportional to the joint probability for finding two atoms at two given
positions.

It was shown in [43, 46] that the correlation functions are very useful for a description of
the composite fermionization and the phase separation limits. In the following, we will carefully
look at the transition between these two limits. The phase separation occurs for g, and g, large
and implies a density distribution with atoms of species B localized at the center of the trap,
while the atoms of species A gather at the edges of the density of B. As discussed above, the de-
mixing point can also be identified in the coherence, the interaction energies, and the
entanglement.

In figure 5 we show the OBDMs, TBDFs and CTBDFs just before (g, = 5) and just after
(ga = 7), the crossover. The upper and lower rows show numerical results, while the middle
row represents the analytical results obtained from ansatz (9) with ay = axg = 0. One can see
that just before the crossover, the densities of both species, i.e., the diagonals of the OBDMs,
significantly overlap (panels (a) and (b)), whereas the overlapping is greatly reduced after the
crossover (panels (k) and (1)). The TBDFs and CTBDFs before and after the crossover (panels
(c)—(e) and (m)—(0), respectively) demonstrate that the atoms of species A are anticorrelated
with themselves and with the atoms of species B, as both functions vanish along the diagonal.
Note that at the same time, atoms of species B are not strongly correlated. This is also captured
by ansatz (9), where strong correlations are induced by zeros whenever A-A or A-B atoms
overlap (see panels (f)—(j)). All densities and pair correlations computed with this ansatz
qualitatively resemble the exact correlation functions just before demixing. However, the ansatz
fails to describe the ground state of the system once it has phase separated.

Let us note that the TBDF for the A species shown in figure 5(c) corresponding to the
crossover for N, = Ng = 2 looks similar to those obtained for Ny = 4 and a very heavy atom in
component B (discussed in [56, 57]) or a large number of atoms in B (discussed in [42]). Those
cases belong to the phase-separated limit, in which B formed a material barrier. Therefore, the
two atoms of A stay at each side of B. Very differently in this case, there are only two atoms of
A, and they can be localized in either side of B.

For Ny = Ng > 2, the results discussed above remain qualitatively valid. We show in
figure 6(a) the densities for the composite fermionization limit when Ny = Ng = 2, 4, 6, 8, 10
calculated with DMC. In this situation, the OBDMs are equal for both species. The two peaks
present in the density tend to spatially separate as N is increased as a consequence of the large
repulsion between both species, which increases with the number of atoms. In figures 6(b) and
(c), we show the densities for B and A, respectively, in the phase-separated limit. As N is
increased, the atoms of B have a greater tendency to localize in the center of the trap. The
numerically calculated density for A shows that this component is localized at each side of B,
forming two TG gases with N/2 atoms in each side. Note that this is reminiscent of effects in
two-component fermionic systems [71], where it was recently shown that a single-particle
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Figure 5. The first and second columns show the OBDMs; the third and fourth columns
the TBDFs, each time for species A and B, respectively; and the last column shows the
CTBDF. g, is large in all panels. The first and last row display the numerical result
obtained for a value of g, just before and after the crossover, respectively, and the
middle row shows the results obtained from calculating the OBDMs and TBDF directly
using the ansatz given in equation (9) with ay = aag = 0. Good agreement is clearly
visible with the numerical results before the crossover.
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Figure 6. Densities with Ny = Ng = 2, 4, 6, 8, 10 atoms. (a) Densities plotted in the
composite fermionization limit, showing that the two peaks appear farther appart as N is
increased. (b) Densities for B in the phase-separated limit. The atoms tend to localize
more and more in the center as N is increased. (c) Densities for A in the phase-separated
limit. The atoms of A are in the edges of B, forming two TG gases with N/2 atoms.
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Figure 7. Largest occupations AJ* and A of a natural orbital and average interaction
energies as a function of g, and g,p, When Na = 2, gz = 0. (a) and (b) show A¢* and A’
when Ng = 3. (¢) and (d) represent (Ua ) and (Uag), respectively, for the same case.
(e)—(h) represent the same when Ng = 4. The region in which B is not condensed is
reduced as Mg is increased, keeping N constant.

minority component will be trapped in the center of the majority component due to correlations
in the wave function.

The difference in the energy between BEC-BEC and TG-BEC regimes is further
increased in balanced systems of a larger size, Ny = Ng > 1. Indeed, according to
equation (15), the energy in the BEC-BEC scales linearly with the number of particles N,
which is a typical behavior of weakly interacting bosons. Instead, in the TG-BEC limit,
according to equation (16) the dependence on N is quadratic. This resembles the behavior of the
energy of fermionic particles and is a manifestation of Girardeau mapping. Comparing the
results for Ny = Ng = 2 with Ny = Ng = 10, we already observe how the difference in the
energy between limits increases (see figure 4).

4. Effect of a larger population in the weakly interacting species

In the imbalanced case Ng > Nj, the wavefunction (9) can be equally used as an ansatz for the
exact ground state of the systems. The four limits discussed above equally exist. Nevertheless,
the weakly interacting species now has a greater tendency to localize in the center of the trap
and condense, which modifies the boundaries between the different regimes associated to these
limits. In figures 7(a)—(b) and (e)—(f) we report the largest eigenvalue of the OBDM for species
A and B to quantify the coherence, covering the whole range of coupling constants, when
N =2 and N = 3, 4, respectively. As Np is increased we observe that the region in which B
is not condensed is reduced (the light blue area in figures 7(b) and (f)). Moreover, the minimum
value of A}, which occurs in this non-condensed area, grows with Ny for fixed N,. Notice also
that the area in which A¢* approaches the largest possible value 4o = 1, i.e., close to the 8, axis,
is reduced as Np is increased.
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Figure 8. Densities for both species between the four different regimes. Upper (lower)
row is the density for A (B) species, when Ny = 2 and Ng = 4. Panel layout is as in
figure 2. The density for B in the composite fermionization limit is more similar to the
one obtained in the phase separation limit.

In figures 8(a) and (b), we show the density profiles for A and B along the transition
between the BEC-BEC limit and composite fermionization for Ny = 2 and Ng = 4. The atoms
of species B are now more concentrated in the center than when both populations were equal,
even though species B is still not fully condensed. The two peaks in species A appear at a
smaller value of g, and are more spatially separated than in the case Ny = N5. We note that in
the composite fermionization limit, the density of species A in the center for the balanced case
is finite, while in the imbalanced case it vanishes (compare figures 2(a) and 8(a)). The density
profiles along the transition between the TG-BEC and the phase-separated gas are presented in
figures 8(c) and (d). Comparing with the balanced case plotted in figures 2(c) and (d), we notice
that, in the phase separation limit, the two peaks in the density profile of A are now more
separated, and the squeezing in the density of B is smaller. The average interaction energy
(Uag) (figures 7(c) and (g)) tends to zero when phase separation occurs. Figures 8(e) and (f)
report the density along the transition between composite fermionization and phase separation.
We observe that the position of the two peaks in the density profile of A in the phase-separated,
and the composite fermionization limit is closer than in the balanced case (compare with
figures 2(e) and (f)). Also, the crossover occurs now at a smaller value of g,. The average
interaction energy (U, ) (figures 7(d) and (h)) decreases abruptly to zero after the crossover. We
conclude that for larger imbalances, Ng > N,, the composite fermionization region is highly
suppressed, and, therefore, the surviving limits are those associated to BEC-BEC, TG-BEC,
and the phase-separated mixtures.
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If the macroscopic limit is reached in such a way that the number of atoms in one of the
species is fixed, the minority species plays the role of an impurity that perturbs the majority
species. The relative contribution of the minority species to the energy becomes smaller, and a
polaronic description might be applicable.

5. Summary and conclusions

Current experimental advances in ultracold atomic physics allow one to scrutinize the onset and
evolution of correlations in few-atom bosonic fluids. Small samples can be trapped, and their
interactions can be largely tuned, thus providing a fantastic ground to understand how quantum
many-body correlations build up in small samples. Binary mixtures are specially appealing, as
they provide the first step toward understanding the effect of environments on quantum systems
in a controlled way. To advance in that direction, we study the effect of embedding a quantum
fluid (component A) within a second quantum fluid (B) with tunable intra- and inter-species
interactions at zero temperature. We fix the coupling constant of B-B interactions to that of ideal
bosons, gz =0, and vary A-A and A-B interactions in a wide range, 0 < g, < oo,
0 < gog < co. This permits us to explore the phase diagram for a variety of regimes. The
energy, one- and two-body correlation functions, density profiles, and von Neumann entropy
are calculated exactly, using the diagonalization method. For larger system sizes, the results are
complemented with the energy and density profiles obtained by the diffusion Monte Carlo
method.

We have described the transition between the following four limits: (a) the BEC-BEC
limit, where both components interact weakly and thus remain condensed, (b) the BEC-TG
limit, where the two components interact weakly among each other and A has strong intra-
species interaction, (c) the composite fermionization limit, where the interaction between both
species is large, inducing strong correlations within both species, and (d) a phase separation
limit, where both the intra-species interaction in A and the inter-species interactions are large.
We show that the transition between the different limits involves sophisticated changes in the
one- and two-body correlations. The energetic properties change in a smooth way, with the
energy and its derivatives remaining continuous, which implies a transition of a crossover type
rather than a true phase transition. At the same time, the entanglement between the two
components has a much sharper dependence on the interactions. This is demonstrated by
reporting the von Neumann entropy, which manifests a sharp peak along the transition between
composite fermionization and phase separation. The evolution of the density profiles of A and B
components is studied in detail both for the balanced and the imbalanced case. The effect of a
large number of particles on the energy and the density profiles is discussed. We analyze the
coherence properties by expanding the one-body density matrix in natural orbitals and obtaining
the occupation numbers. We demonstrate that full condensation (largest occupation number
equal to one) for A species is reached only in the BEC-BEC regime, while the weakly
interacting B species also remains fully condensed in the TG-BEC regime, and the
condensation is almost complete in the phase separation regime. We argue that the described
picture of the transition between four mentioned regimes remains valid also in macroscopically
large balanced mixtures, N» = Ng — o0. Conversely, when the macroscopic limit is reached by
increasing the number of atoms of the weakly-interacting species Ny — oo, the composite
fermionization limit is suppressed. Therefore the phase diagram in this highly imbalanced case
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resembles that expected within a mean-field approach. The studied effects are relevant to
ongoing and future experiments with small two-component systems.
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