150 research outputs found

    Natural Products & Phytotherapeutics: why a new section?

    Get PDF

    Health-promoting effects of traditional Mediterranean diets - a review.

    Get PDF
    The study of traditional dietary habits is important both for healthy and cultural aspects: it provides scientifi c evidence on the effects of traditional foods on health and contributes to preserve elements of our nutritional and cultural inheritance. In general, traditional foods are considered healthy, though their effects should be better substantiated by an appropriate scientifi c approach. The Mediterranean basin has been for millennia a crossroads of people and civilizations where boats, carriages, merchandises, but also creative ideas and religions have converged. Mediterranean diet originated from the ancient inhabitants of this region, the Greek and Roman ancestors. In countries surrounding Mediterranean Sea, food is heavily infl uenced by the climate of the basin. Traditionally, Mediterranean diet originated in areas where olive (Olea europea L.) and grape (Vitis vinifera L.) were cultivated, olive oil and wine produced and regularly consumed. The archaeological record suggests that cultivation of the domesticated grape, Vitis vinifera subsp. vinifera, began 6000–8000 years ago in the Near East from its wild progenitor, Vitis vinifera subsp. sylvestris. The hundreds of grape cultivars in use today have been generated since then by vegetative propagation and by crosses [McGovern, 2003]. Olive tree was domesticated approximately 6000 years ago in the east Mediterranean area. Since Roman times, the cultivation and the techniques of producing olive oil had spread to all parts of the Mediterranean basin, but they did not expand, except in some region

    Vapor and Liquid Phase Profiles of Essential Oils from Abies, Picea and Pinus Species and Their Phytotoxic Interactions with Weed Growth in Pre- and Post-Emergence Conditions

    Get PDF
    The chemical content of essential oils (EO) obtained from the leaves of four Pinaceae (Abies alba, Picea abies, Pinus cembra and Pinus mugo) was investigated by SPME-GC-MS technique. The vapor phase was characterized by the monoterpenes with values higher than 95.0%. Among them, a-pinene (24.7–48.5%), limonene (17.2–33.1%) and b-myrcene (9.2–27.8%) were the most abundant. The monoterpenic fraction prevailed over the sesquiterpenic one ( 74.7%) in the EO liquid phase. Limonene was the major compound in A. alba (30.4%), P. abies (20.3%) and P. mugo (78.5%), while a-pinene in P. cembra (36.2%). Regarding the phytotoxic properties, EOs were studied at different doses (2–100 L) and concentrations (2–20/100 L/mL). All EOs were found to be significantly active (p-value < 0.05) against the two recipient species in a dose-dependent way. In pre-emergence tests, germination of Lolium multiflorum and Sinapis alba was reduced by up to 62–66% and 65–82%, respectively, as well as their growth by up to 60–74% and 65–67%, due to the effects of compounds in both the vapor and liquid phases. In post-emergence cconditions, at the highest concentration, the phytotoxicity of EOs caused heavy symptoms and, in the case of S. alba, A. alba EO completely destroyed (100%) the treated seedlings

    A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with antimicrobial drugs: new approach for health promoting products

    Get PDF
    Laurus nobilis L. (laurel, Lauraceae) and Prunus armeniaca L. (apricot, Rosaceae) are important industrial crops and display significant biological properties, including antimicrobial activity. In this work, essential oils (EOs) prepared from the leaves of both species from Morocco were evaluated for the first time for possible synergistic in vitro antibacterial and antifungal effects with some conventional antimicrobial drugs, namely fluconazole, ciprofloxacin and vancomycin. Samples were further evaluated for chemical composition by gas chromatography-mass spectrometry (GC-MS). The main volatile compounds detected in L. nobilis were eucalyptol (40.85%), α-terpinyl acetate (12.64%) and methyl eugenol (8.72%), while P. armeniaca was dominated essentially by (Z)-phytol (27.18%), pentacosane (15.11%), nonacosane (8.76%) and benzaldehyde (7.25%). Regarding antimicrobial activity, both EOs inhibited significantly all the microorganisms tested. The EO from L. nobilis had the highest activity, with minimal inhibitory concentrations (MICs) ranging from 1.39 to 22.2 mg/mL for bacteria and between 2.77 and 5.55 mg/mL for yeasts. Conversely, the combination of the studied EOs with ciprofloxacin, vancomycin and fluconazol resulted in a noteworthy decrease in their individual MICs. In fact, of the 32 interactions tested, 23 (71.87%) demonstrated total synergism and 9 (28.12%) a partial synergistic interaction. The EO from L. nobilis exhibited the highest synergistic effect with all the antibiotics used, with fractional inhibitory concentration (FIC) index values in the range of 0.266 to 0.75 for bacteria, and between 0.258 and 0.266 for yeast. The synergistic interaction between the studied EOs and standard antibiotics may constitute promising anti-infective agents useful for treating diseases induced by antibiotic-resistant pathogens.info:eu-repo/semantics/publishedVersio

    New insight into the chemical composition, antimicrobial and synergistic effects of the Moroccan endemic Thymus atlanticus (Ball) roussine essential oil in combination with conventional antibiotics

    Get PDF
    This study reported the volatile profile, the antimicrobial activity and the synergistic potential of essential oil (EO) from the Moroccan endemic Thymus atlanticus (Ball) Roussine, in combination with the antibiotics ciprofloxacin and fluconazole for the first time, to the best of our knowledge. The EO chemical composition was determined by gas chromatography coupled to mass spectrometry (GC-MS) analysis and the antimicrobial activity assessed by the disc diffusion method against three Gram positive (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and one clinical isolate, Klebsiella pneumonia). The antifungal activity was evaluated in four pathogenic yeasts (Candida albicans, C. glabrata, C. krusei and C. parapsilosis). The minimum inhibition concentration (MIC) and the synergistic effect with ciprofloxacin and fluconazole were determined by the two-fold dilution technique and checkerboard test, respectively. Twenty-one constituents were identified by GC-MS in the EO, including carvacrol (21.62%) and borneol (21.13%) as the major components. The EO exhibited a significant antimicrobial activity with inhibition zones ranging from 0.7 mm to 22 mm for P. aeruginosa and B. subtilis, respectively, and MIC values varying from 0.56 mg/mL to 4.47 mg/mL. The fractional inhibitory concentration index (FICI) values ranged from 0.25 to 0.50 for bacteria and from 0.25 to 0.28 for yeasts. The maximum synergistic effect was observed for K. pneumonia with a 256-fold gain of antibiotic MIC. Our results have suggested that EO from T. atlanticus may be used alone or in association with antibiotics as a new potential alternative to prevent and control the emergence of resistant microbial strains both in the medical field and in the food industry.info:eu-repo/semantics/publishedVersio

    Resveratrol-Mediated Gold-Nanoceria Synthesis as Green Nanomedicine for Phytotherapy of Hepatocellular Carcinoma

    Get PDF
    In the present study, resveratrol was used to prepare complexes of cerium and nanoceria, also coated with gold (CeO2@Au core-shells) to improve the surface interactions in physiological conditions.The CeO2@Au core-shells were characterized using powder X-ray diffraction (PXRD), Fourier transforms infrared spectroscopy (FTIR), transmission electron microscope (TEM) analysis, dynamic light scattering (DLS) and ζ potential.The experiment was led to the successful synthesis of nanosized CeO2@Au core-shells, although agglomeration of particles caused the distribution of the larger particles. The TEM analysis demonstrated the particles sizes ranged from 20 nm to 170 nm. Moreover, the PXRD analysis showed that both nanoceria and gold with the same crystal systems and space groups. To investigate the anticancer activity of the CeO2@Au core-shells, the cytotoxicity of the nanoparticles was investigated against liver cancerous cell lines (HepG2).The results indicated biosynthesized NCs have significant cellular toxicity properties against HepG2 and could be utilized in hepatocarcinoma therapy. Furthe

    Scrapie infectivity is quickly cleared in tissues of orally-infected farmed fish

    Get PDF
    BACKGROUND: Scrapie and bovine spongiform encephalopathy (BSE) belongs to the group of animal transmissible spongiform encephalopathy (TSE). BSE epidemic in the UK and elsewhere in Europe has been linked to the use of bovine meat and bone meals (MBM) in the feeding of cattle. There is concern that pigs, poultry and fish bred for human consumption and fed with infected MBM would eventually develop BSE or carry residual infectivity without disease. Although there has been no evidence of infection in these species, experimental data on the susceptibility to the BSE agent of farm animals other than sheep and cow are limited only to pigs and domestic chicken. In the framework of a EU-granted project we have challenged two species of fish largely used in human food consumption, rainbow trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus), with a mouse-adapted TSE strain (scrapie 139A), to assess the risk related to oral consumption of TSE contaminated food. In trout, we also checked the "in vitro" ability of the pathological isoform of the mouse prion protein (PrP(Sc)) to cross the intestinal epithelium when added to the mucosal side of everted intestine. RESULTS: Fish challenged with a large amount of scrapie mouse brain homogenate by either oral or parenteral routes, showed the ability to clear the majority of infectivity load. None of the fish tissues taken at different time points after oral or parenteral inoculation was able to provoke scrapie disease after intracerebral inoculation in recipient mice. However, a few recipient mice were positive for PrP(Sc )and spongiform lesions in the brain. We also showed a specific binding of PrP(Sc )to the mucosal side of fish intestine in the absence of an active uptake of the prion protein through the intestinal wall. CONCLUSION: These results indicate that scrapie 139A, and possibly BSE, is quickly removed from fish tissues despite evidence of a prion like protein in fish and of a specific binding of PrP(Sc )to the mucosal side of fish intestine

    Cytotoxic activity of a plant extract on cancer cells

    Get PDF
    Chemoprevention by natural products may be considered a promising approach to cancer control and management [1]. Many studies have demonstrated antiproliferative, cytostatic and cytotoxic activities of phytochemicals against cancer cells [2]. In this study, a plant extract from Arctium lappa, Berberis vulgaris and Eschscholtia californica was tested as potential anticancer agent. The antitumoral activity of this plant extract was tested on four human cancer cell lines: MCF-7 (breast carcinoma cells), Huh-7 (hepatic carcinoma cells), HTB-43 (oropharyngeal carcinoma cells) and ECV- 304 (urinary bladder carcinoma cells). The efficacy of the extract was compared to the common chemotherapeutic agent cyclophosphamide. Three plant extract concentrations were tested: 800, 650 and 450 ng/ml; for cyclophosphamide, three concentrations were assayed, according to literature data: 1300, 1000 and 850 ng/ml [3]. In addition, plant extract and cyclophosphamide were tested on two primary cell lines as controls, human gingival fibroblasts and human mammary fibroblasts. Cell viability was evaluated by the MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma] colorimetric assay and the new xCELLigence system (Roche) for real-time monitoring of cell viability. All concentrations of plant extract exhibited a high level of cytotoxicity on MCF-7, Huh-7, HTB-43 and ECV-304 cancer cells, similar to cyclophosphamide, though they slightly reduced viability of human gingival and mammary fibroblasts. Conversely, the conventional chemotherapeutic drug showed a marked cytotoxicity on control cells. The potential of the plant extract has been demonstrated in vitro on various types of cancers, suggesting a possible use of this natural product as a promising anticancer agent. Further studies are needed to ascertain its efficacy in vivo and to elucidate its mechanism(s) of action at molecular and biochemical levels

    Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Get PDF
    Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products
    • …
    corecore