58 research outputs found

    Comment on the choice of time in a two-component formulation of the Wheeler--DeWitt equation

    Full text link
    The two-component formalism in quantum cosmology is revisited with a particular emphasis on the identification of time. Its relation with the appearance of imaginary eigenvalues is established. It is explicitly shown how a good choice of the global time prevents this peculiarity.Comment: 8 pages; version accepted for publication in Int. J. Mod. Phys.

    Validación de datos de humedad de suelo SMOS en la región pampeana argentina

    Get PDF
    En el presente trabajo se describe la validación del producto de humedad de suelo SMOS (Soil Moisture Ocean Salynity, nivel 2, versión 5.51) que provee la Agencia Espacial Europea, en la región pampeana argentina. La región para la validación de datos fue seleccionada por presentar condiciones llanas y una gran extensión con cobertura vegetal de baja altura, ideales para la validación de datos SMOS (obtenidos a partir de microondas pasivas). Para la validación se realizaron mediciones en 4 áreas de agricultura extensiva (área 1: -32.982N, -62.505E; área 2:- 32.510N, -62.788E; área 3: -32.024N, -63.692E y área 4: -37.315N, -58.868E, WGS84), en las que se midió la humedad de suelo con sensores ThetaProbe ML2x y Stevens Hydra Probe II SM. Las mediciones con las sondas se realizaron a 5 y 6 cm de profundidad y fueron calibradas en el laboratorio del Instituto de Hidrología de Llanuras con muestras no disturbadas colectadas en campo. Las comparaciones entre las medidas de terreno y los datos del producto SMOS mostraron un RMSE de 0,05 latexm3.m3latex m^{3}.m^{-3} , indicando la utilidad de éstos para aplicaciones hidrológicas a escala de grandes cuencas.This work describe the validation on pampean región of soil moisture product of SMOS (Soil Moisture Ocean Salynity, level 2, version 5.51), which is provide by European Spatial Agency. In the study area there are suitable conditions for SMOS data validation, like great plains and short crops. In 4 areas with extensive agriculture (area 1: -32.982N, -62.505E; area 2:-32.510N, -62.788E; area 3: - 32.024N, -63.692E and area 4: -37.315N, -58.868E, WGS84) soil moisture was measured with ThetaProbe ML2x and Stevens Hydra Probe II SM sensors. The measurements were taken at 5 and 6 cm depth. Then they were calibrated in the laboratory of Instituto de Hidrología de Llanuras with undisturbated soil samples. The comparison between field measures and SMOS data shown errors smaller than 10%, indicating the usefulness of SMOS soil moisture products for great basins hydrology studie

    Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term

    Get PDF
    We study five dimensional thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term. The linearized stability under radial perturbations and the amount of exotic matter are analyzed as a function of the parameters of the model. We find that the inclusion of the quadratic correction substantially widens the range of possible stable configurations, and besides it allows for a reduction of the exotic matter required to construct the wormholes.Comment: 13 pages, 6 figures; v2: minor changes and new references added. Accepted for publication in General Relativity and Gravitatio

    Validación de datos de humedad de suelo SMOS en la región pampeana argentina

    Get PDF
    En el presente trabajo se describe la validación del producto de humedad de suelo SMOS (Soil Moisture Ocean Salynity, nivel 2, versión 5.51) que provee la Agencia Espacial Europea, en la región pampeana argentina. La región para la validación de datos fue seleccionada por presentar condiciones llanas y una gran extensión con cobertura vegetal de baja altura, ideales para la validación de datos SMOS (obtenidos a partir de microondas pasivas). Para la validación se realizaron mediciones en 4 áreas de agricultura extensiva (área 1: -32.982N, -62.505E; área 2:-32.510N, -62.788E; área 3: -32.024N, -63.692E y área 4: -37.315N, -58.868E, WGS84), en las que se midió la humedad de suelo con sensores ThetaProbe ML2x y Stevens Hydra Probe II SM. Las mediciones con las sondas se realizaron a 5 y 6 cm de profundidad y fueron calibradas en el laboratorio del Instituto de Hidrología de Llanuras con muestras no disturbadas colectadas en campo. Las comparaciones entre las medidas de terreno y los datos del producto SMOS mostraron un RMSE de 0,05 m3.m-3, indicando la utilidad de éstos para aplicaciones hidrológicas a escala de grandes cuencas.This work describes the validation of the SMOS soil moisture product (Soil Moisture Ocean Salinity, level 2, version 5.51) provided by the European Spatial Agency, on the Pampean region of Argentina. In the study area, there are suitable conditions for SMOS data validation, such as great plains and short vegetation coverage. In 4 areas with extensive agriculture (area 1: -32.982N, -62.505E; area 2:-32.510N, -62.788E; area 3: -32.024N, -63.692E and area 4: -37.315N, -58.868E, WGS84) soil moisture was measured with ThetaProbe ML2x and Stevens Hydra Probe II SM sensors. The measurements were taken at 5 and 6 cm depth. Then they were calibrated in the laboratory of Instituto de Hidrología de Llanuras with undisturbated soil samples. The comparison between field measures and SMOS data shown errors smaller than 10%, indicating the usefulness of SMOS soil moisture products for great basins hydrology studiesUniversidad Nacional de La Plat

    Relativistic theories of interacting fields and fluids

    Full text link
    We investigate divergence-type theories (DTT) describing the dissipative interaction between a field and a fluid. We look for theories which, under equilibrium conditions, reduce to the theory of a Klein-Gordon scalar field and a perfect fluid. We show that the requirements of causality and positivity of entropy production put non-trivial constarints to the structure of the interaction terms. These theories provide a basis for the phenomonological study of the reheating period.Comment: 17 pages, no figures, minor corrections mad

    The seeds of divergence: the economy of French North America, 1688 to 1760

    Get PDF
    Generally, Canada has been ignored in the literature on the colonial origins of divergence with most of the attention going to the United States. Late nineteenth century estimates of income per capita show that Canada was relatively poorer than the United States and that within Canada, the French and Catholic population of Quebec was considerably poorer. Was this gap long standing? Some evidence has been advanced for earlier periods, but it is quite limited and not well-suited for comparison with other societies. This thesis aims to contribute both to Canadian economic history and to comparative work on inequality across nations during the early modern period. With the use of novel prices and wages from Quebec—which was then the largest settlement in Canada and under French rule—a price index, a series of real wages and a measurement of Gross Domestic Product (GDP) are constructed. They are used to shed light both on the course of economic development until the French were defeated by the British in 1760 and on standards of living in that colony relative to the mother country, France, as well as the American colonies. The work is divided into three components. The first component relates to the construction of a price index. The absence of such an index has been a thorn in the side of Canadian historians as it has limited the ability of historians to obtain real values of wages, output and living standards. This index shows that prices did not follow any trend and remained at a stable level. However, there were episodes of wide swings—mostly due to wars and the monetary experiment of playing card money. The creation of this index lays the foundation of the next component. The second component constructs a standardized real wage series in the form of welfare ratios (a consumption basket divided by nominal wage rate multiplied by length of work year) to compare Canada with France, England and Colonial America. Two measures are derived. The first relies on a “bare bones” definition of consumption with a large share of land-intensive goods. This measure indicates that Canada was poorer than England and Colonial America and not appreciably richer than France. However, this measure overestimates the relative position of Canada to the Old World because of the strong presence of land-intensive goods. A second measure is created using a “respectable” definition of consumption in which the basket includes a larger share of manufactured goods and capital-intensive goods. This second basket better reflects differences in living standards since the abundance of land in Canada (and Colonial America) made it easy to achieve bare subsistence, but the scarcity of capital and skilled labor made the consumption of luxuries and manufactured goods (clothing, lighting, imported goods) highly expensive. With this measure, the advantage of New France over France evaporates and turns slightly negative. In comparison with Britain and Colonial America, the gap widens appreciably. This element is the most important for future research. By showing a reversal because of a shift to a different type of basket, it shows that Old World and New World comparisons are very sensitive to how we measure the cost of living. Furthermore, there are no sustained improvements in living standards over the period regardless of the measure used. Gaps in living standards observed later in the nineteenth century existed as far back as the seventeenth century. In a wider American perspective that includes the Spanish colonies, Canada fares better. The third component computes a new series for Gross Domestic Product (GDP). This is to avoid problems associated with using real wages in the form of welfare ratios which assume a constant labor supply. This assumption is hard to defend in the case of Colonial Canada as there were many signs of increasing industriousness during the eighteenth and nineteenth centuries. The GDP series suggest no long-run trend in living standards (from 1688 to circa 1765). The long peace era of 1713 to 1740 was marked by modest economic growth which offset a steady decline that had started in 1688, but by 1760 (as a result of constant warfare) living standards had sunk below their 1688 levels. These developments are accompanied by observations that suggest that other indicators of living standard declined. The flat-lining of incomes is accompanied by substantial increases in the amount of time worked, rising mortality and rising infant mortality. In addition, comparisons of incomes with the American colonies confirm the results obtained with wages— Canada was considerably poorer. At the end, a long conclusion is provides an exploratory discussion of why Canada would have diverged early on. In structural terms, it is argued that the French colony was plagued by the problem of a small population which prohibited the existence of scale effects. In combination with the fact that it was dispersed throughout the territory, the small population of New France limited the scope for specialization and economies of scale. However, this problem was in part created, and in part aggravated, by institutional factors like seigneurial tenure. The colonial origins of French America’s divergence from the rest of North America are thus partly institutional

    The Seeds of Divergence: The Economy of French North America, 1688 to 1760

    Full text link

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
    corecore