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Abstract We study five dimensional thin-shell wormholes in Einstein–Maxwell
theory with a Gauss–Bonnet term. The linearized stability under radial pertur-
bations and the amount of exotic matter are analyzed as a function of the
parameters of the model. We find that the inclusion of the quadratic correction
substantially widens the range of possible stable configurations, and besides it
allows for a reduction of the exotic matter required to construct the wormholes.

Keywords Lorentzian wormholes · Exotic matter · Gauss–Bonnet term

1 Introduction

Traversable Lorentzian wormholes are solutions of the equations of gravita-
tion which connect two regions of the same universe, or of two universes, by a
throat [1,2]. The throat is defined as a minimal area hypersurface which satis-
fies a flare-out condition [3]. This requires the presence of exotic matter, that
is, matter which violates the null energy condition (NEC) [1–5]. Because it
has been shown that the amount of exotic matter necessary for the existence
of a wormhole can be made infinitesimally small by a suitable choice of the
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geometry [6], considerable efforts have been addressed to precisely quantify
such amount for different configurations, and to show how it can be minimized
[7–10]. Indeed, the total amount of exotic matter has been pointed as an indi-
cator of the physical viability of traversable wormholes [11].

Another central aspect of a wormhole – in fact, of any physically meaningful
solution within any theory of gravitation – is its stability. Within the frame-
work of traversable wormholes, stability under perturbations preserving the
symmetry of the original configuration has been widely analyzed. In particu-
lar, this problem has received considerable attention in the case of thin-shell
wormholes, that is, wormholes which are mathematically constructed by cut-
ting and pasting two manifolds to obtain a geodesically complete new manifold
[12,13]. In this case the exotic matter is located in a shell placed at the join-
ing surface; the framework for dealing with these wormholes is the Darmois
–Israel formalism, which leads to the Lanczos equations, that is, to the equa-
tions of gravitation projected on the joining surface [14–19]. The solution of
these equations, once provided an equation of state for the matter on the shell,
determines the dynamical evolution. Such a procedure has been applied to
spherically and cylindrically symmetric configurations associated to wormhole
solutions within general relativity [20–26].

The theory of gravity in five dimensions corresponding to the Einstein–
Hilbert action supplemented with a Gauss–Bonnet term is, in a certain sense,
the most general (metric) theory of gravity one can construct satisfying the con-
servation of the equations of motion which still remain being of second order
[27]. This theory, and its analogue in D dimensions, was extensively studied in
the last three decades and, in particular, the attention focused on it was mainly
due to the fact that the theory arises within the string theoretical framework
[28–31]. For instance, a version of this appears as corrections (proportional to
the inverse of the string tension) to the low energy effective action of the heter-
otic string theory [32] as well as in Calabi–Yau compactification of the M-theory
[33]. Besides, these theories result closely related to Chern–Simons gravity in
odd dimensions which turns out to correspond to a particular choice of the
parameters of the model; see Ref. [34]. Physically, adding the Gauss–Bonnet
(higher order) terms in the gravitational action corresponds to the inclusion of
short distance corrections to general relativity. The study of black hole solutions
in Einstein–Gauss–Bonnet theory was initiated in the decade of 1980, when the
statical spherically symmetric solution was reported by Boulware and Deser in
Ref. [35]. Subsequently, Wiltshire derived in Ref. [36,37] the charged black hole
geometry in both Maxwell and Born–Infeld electrodynamics. Both geometrical
and thermodynamical aspects of black holes are substantially modified by the
addition of the Gauss–Bonnet term [38].

Lorentzian wormholes in spacetimes with more than four dimensions were
analyzed by several researchers [39–42]. In particular, wormholes in
Einstein–Gauss–Bonnet gravity were considered in Ref. [39]. In the present
work, the idea is then to use Lorentzian wormholes as a test bed to explore
some of the qualitative changes that could happen in General Relativity with
the addition of a Gauss-Bonnet term. More precisely, we shall study how the
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stability under radial perturbations of five dimensional spherically symmetric
thin-shell wormholes in Einstein–Maxwell theory and the amount of exotic
matter needed are affected by the presence of a Gauss–Bonnet term. In Sect. 2
we shall construct a generic thin-shell wormhole and write down the corre-
sponding Lanczos equations; in Sect. 3 we shall analyze its mechanical stability
under perturbations preserving the symmetry, and in Sect. 4 the energy condi-
tions will be studied, and the total amount of exotic matter will be calculated.
The dependence of the results in terms of the parameters of the model will
be analyzed in detail. It will be shown that the inclusion of the Gauss–Bonnet
term permits stability configurations with more physical values of β2 with small
charge; also, we will see that the amount of exotic matter can be reduced for
given values of the parameters. Section 5 is devoted to a brief summary and
discussion. Throughout the paper we set units so that c = G = 1.

2 Charged thin-shell wormholes

The five-dimensional Einstein–Maxwell theory with a Gauss–Bonnet term rep-
resenting a quadratic curvature correction is given by [35–37]

S =
∫

d5x
√−g

[
R − 2� − 1

4
FμνFμν + α

(
Rαβγ δRαβγ δ − 4RαβRαβ + R2

)]
, (1)

where the signature chosen is (− + + + +), � is the cosmological constant, and
α is a constant of dimensions (length)2. The variational principle δS = 0 leads
to the Einstein–Maxwell equations

Rμν − 1
2

gμνR + �gμν = 1
2

(
TEM

μν + TGB
μν

)
, (2)

TEM
μν = FμαF α

ν − 1
4

gμνFαβFαβ , (3)

TGB
μν = α

[
8RαβRα β

μ ν − 4Rμαβγ R αβγ
ν + 8RμαRα

ν − 4RRμν

+ gμν

(
Rαβγ δRαβγ δ − 4RαβRαβ + R2

)]
, (4)

where TEM
μν is the usual electromagnetic energy–momentum tensor, and TGB

μν is
an effective tensor associated with the quadratic Gauss–Bonnet term included
in the action. These equations admit a spherically symmetric solution given by
[36,37]

ds2 = −f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdχ2 + sin2 θ sin2 χdϕ2), (5)
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f (r) = 1 + r2

4α
− r2

4α

√
1 + 16Mα

πr4 − 8Q2α

3r6
+ 4�α

3
. (6)

The non null components of the electromagnetic tensor in an orthonormal frame
are Ft̂r̂ = −Fr̂t̂ = Q/4πr3. It is not difficult to check that in the limit α → 0
the five dimensional Einstein–Maxwell solution with cosmological constant is
recovered. In this limit, for � = 0 the five dimensional Reissner–Nordström
metric is obtained, so M > 0 and Q can be identified with the mass and charge
respectively. For α �= 0, there is a minimum value of the radial coordinate rmin
such that the function inside the square root in Eq. (6) is positive for r > rmin,
so the metric (5) is well defined. The geometry has a curvature singularity at the
surface defined by r = rmin [36,37]. Depending on the values of the parameters,
this singular surface can be surrounded by an event horizon with radius rh, so
the metric (5) represents a black hole, or in absence of the event horizon, it is
a naked singularity.

We shall construct a spherically symmetric thin-shell wormhole starting from
the generic geometry (5), and introduce the explicit form (6) in the final results.
We take two copies of the region r ≥ a, with a greater than rh and rmin to
avoid possible horizons and singularities in our geometry, and paste them to
obtain a geodesically complete new manifold with a matter shell at the surface
r = a, where the throat of the wormhole is located. The procedure follows
the steps of the Darmois–Israel formalism; in terms of the original coordinates
Xγ = (t, r, θ , χ , ϕ), on the shell we define the coordinates ξ i = (τ , θ , χ , ϕ), with
τ the proper time. Thus, using an orthonormal basis {eτ̂ , e

θ̂
, eχ̂ , eϕ̂}, the extrinsic

curvature at the two sides of the shell reads

K±
î ĵ

= −n±
γ

(
∂2Xγ

∂ξ î ∂ξ ĵ
+ �

γ
αβ

∂Xα

∂ξ î

∂Xβ

∂ξ ĵ

)∣∣∣∣∣
r=a

, (7)

where n±
γ are the unit normals to the surface. Defining κî ĵ = K+

î ĵ
− K−

î ĵ
and

κ = tr(κî ĵ), we obtain the Lanczos equations (the Einstein’s equations on the
shell)

κî ĵ − κgî ĵ = −8πSî ĵ, (8)

where gî ĵ = diag(−1, 1, 1, 1) and Sî ĵ = diag(σ , p
θ̂
, pχ̂ , pϕ̂ ) is the surface energy-

momentum tensor. To allow for the analysis of radial perturbations, we let the
throat radius to vary with the proper time: a = a(τ ). As a consequence of the
generalized Birkhoff theorem proved in Ref. [36,37], the geometry will remain
given by (5) and (6) for any r greater than a(τ ). The resulting expressions for
the energy density and pressures for a generic metric function f turn to be

Sττ = σ = − 3
4πa

√
f (a) + ȧ2, (9)
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S
θ̂ θ̂

= Sχ̂ χ̂ = Sϕ̂ϕ̂ = p = −2
3
σ + 1

8π

(
2ä + f ′(a)√

f (a) + ȧ2

)
, (10)

where the overdot and the prime means, respectively, the derivatives with re-
spect to τ and r. As it was to be expected, the energy density is negative,
revealing the existence of exotic matter at the shell. It is easy to see from
Eqs. (9) and (10) that the following conservation equation is fulfilled:

d
dτ

(
σa3

)
+ p

d
dτ

(
a3

)
= 0. (11)

For a static configuration of radius a0 we simply have

σ0 = − 3
4πa0

√
f (a0), p0 = −2

3
σ0 + 1

8π

(
f ′(a0)√

f (a0)

)
. (12)

Note that as the wormhole radius approaches which would be the event hori-
zon radius rh in the original metric, the energy density approaches to zero, but,
instead, the pressure diverges unless f ′(rh) = 0; this will be discussed in detail
in Sect. 4.

3 Stability analysis

We shall study the stability of the configuration under small perturbations pre-
serving the symmetry; for this we shall follow the procedure first applied to
thin-shell wormholes in Ref. [20]. The dynamics of the shell results from the
Eqs. (9) and (10) or, alternatively, from one of them and the conservation equa-
tion (11). In any case an equation of state for the matter on the shell must
be provided; because we are interested in studying small radial perturbations
around a radius of equilibrium a0, we propose a linear relation

p = p0 + β2(σ − σ0), (13)

where σ0 and p0 are the energy density and pressure corresponding to the equi-
librium radius of the wormhole; for ordinary matter β2 would be the speed of
sound, but due to the presence of exotic matter we shall regard it as an arbitrary
constant.

These equations lead to an explicit relation between the energy density and
the radius:

σ(a) =
(

σ0 + p0

β2 + 1

) (a0

a

)3(β2+1) + β2σ0 − p0

β2 + 1
. (14)
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Fig. 1 The stability regions (marked with an S) are shown for � = 0 and α/M = 0.1, which implies
|Qc|/M = 0.38. Only physically admissible regions, r > rh or r > rmin, are considered (see the
text). For the upper left figure |Q| = 0; in the upper right figure, |Q| = 0.99|Qc|; in the lower left,
|Q| = 1.01|Qc|; and for the last one |Q| = 2|Qc|

Introducing this in Eq. (9) we obtain the equation of motion

ȧ2 + V(a) = 0, (15)

where the potential V(a) is defined as

V(a) = f (a) − 16π2

9
a2σ 2. (16)

It is easy to verify that the potential fulfils V(a0) = V′(a0) = 0, so that the stable
equilibrium configurations correspond to the condition V′′(a0) > 0. The second
derivative of the potential for the generic metric (5) is given by
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V′′(a0) = f ′′(a0) − 32π2

9

[
σ 2

0 + 4a0σ0σ
′
0 + a2

0

(
σ ′

0
2 + σ0σ

′′
0

)]

= f ′′(a0) − 32π2

9

[
σ 2

0 + 9(σ0 + p0)
2 + 9β2σ0(σ0 + p0)

]

= f ′′(a0) +
(

3β2 + 2
a0

) [
f ′(a0) − 2f (a0)

a0

]
− f ′2(a0)

2f (a0)
. (17)

Hence the stability of the configuration requires the relation

β2 >
a2

0f ′2(a0) − 2a2
0f ′′(a0)f (a0)

6a0f ′(a0)f (a0) − 12f 2(a0)
− 2

3
(18)

if f ′(a0) − 2f (a0)/a0 > 0, and

β2 <
a2

0f ′2(a0) − 2a2
0f ′′(a0)f (a0)

6a0f ′(a0)f (a0) − 12f 2(a0)
− 2

3
(19)

if f ′(a0) − 2f (a0)/a0 < 0. Although it is possible to write explicitly an analytic
expression of β2 as a function of the parameters, the complexity of the formulas
(18) and (19) inhibits to get a clear insight of the stability regions. It is thus
preferable, as it is customary, to draw the curves V′′(a0) = 0, which allow for an
intuitive understanding of the behavior of the configuration. We shall consider
the cases � = 0 and � �= 0 separately, and thoroughly discuss the dependence
of the regions of stability with different choices of the parameters.

3.1 Case � = 0

As pointed above, the square root of the parameter α of the theory introduces a
length scale such that the Gauss–Bonnet corrections become relevant when the
typical dimensions of a given configuration are of order

√|α|. Thus, it is natural
to perform an analysis for different cases depending on the relation existing
between α and the mass M.

In the case of null cosmological constant the metric from which we start
presents a singularity located at rmin given by the greatest real and positive
solution of the equation

r6 + 16Mα

π
r2 − 8Q2α

3
= 0. (20)

If Eq. (20) has no real positive solutions we have rmin = 0, where the metric
diverges. This singularity is surrounded, in principle, by two horizons with radii

r± =
⎧⎨
⎩

M
π

− α ±
[(

M
π

− α

)2

− Q2

3

]1/2
⎫⎬
⎭

1/2

. (21)
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The event horizon is placed at rh = r+, and r− is the inner horizon. For α >

−M/π , rmin < rh and the singularity can be shielded by the event horizon.
But when α ≤ −M/π , we have a naked singularity because rmin ≥ rh. For
|α| < M/π , it is easy to see that there exists a critical value of the charge

|Qc| = √
3

∣∣∣∣M
π

− α

∣∣∣∣ , (22)

such that if |Q| < |Qc| there are two horizons, if |Q| = |Qc| there is only one
(degenerate) horizon, and if |Q| > |Qc| there are no horizons. For |α| ≥ M/π ,
no horizons exist for any value of the charge (except the nonphysical solution
rh = 0 for α = M/π and Q = 0). As mentioned in Sect. 2, the wormhole
radius a0 is taken greater than rh to avoid the presence of event horizons in our
wormhole geometries. Note that when there is no horizon, the presence of the
singular surface in r = rmin compels us to consider values of a0 greater than rmin
for the radius of the wormhole throat.

The associated stability analysis (shown in Figs. 1–5) reveals both analogies
and remarkable differences with the general relativity case corresponding to
α → 0: (1) Two distinct regimes take place for |α| < M/π and |α| ≥ M/π .
In the first range most relevant results regarding the stability of the solutions
appear, while in the second one stability requires β2 < 0 (Figs. 4, 5). (2) For
α > 0 the critical value of charge, |Qc|, is smaller than the value correspond-
ing to general relativity; instead for α < 0 the critical charge is larger than in
the absence of the Gauss–Bonnet terms. For α → 0 (five dimensional Reiss-
ner–Nordström metric) the critical value of the charge is |Qc| = √

3M/π . (3)
As larger values of α are considered, the regions of stability become enlarged
(including β2 < 1, which is an interesting feature) without the necessity of large
values of the charge; in particular (see upper left in Fig. 2), this is possible with
zero charge, which constitutes a drastic difference comparing with the general
relativity case. Besides, for |Q| � |Qc| we find a range of radii a0 for which
stability is achieved with any value of the parameter β2 (lower left in Fig. 2).
(4) For −M/π < α < 0 the regions of stability turn to be smaller than without
the Gauss–Bonnet quadratic contribution (see Fig. 3).

3.2 Anti-De Sitter case

The presence of the cosmological constant introduces a restriction on the admis-
sible values for α: it must be �α > −3/4, in order to keep the metric real for
large values of r. Now the singular surface radius rmin is given by the greatest
real and positive solution of the equation

(
1 + 4�α

3

)
r6 + 16Mα

π
r2 − 8Q2α

3
= 0, (23)
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Fig. 2 The stability regions are shown for � = 0 and α/M = 0.25, which implies |Qc|/M = 0.12.
For the upper left figure |Q| = 0; in the upper right figure, |Q| = 0.99|Qc|; in the lower left,
|Q| = 1.01|Qc|; and for the last one |Q| = 2|Qc|

or rmin = 0 if all real solutions are non positive. The addition of the cosmological
constant makes more complicated the structure of the horizons in the original
manifold. Indeed we now have that the horizons are real and non-negative
solutions of the equation

�r6 − 6r4 + 12
(

M
π

− α

)
r2 − 2Q2 = 0, (24)

subject to the constraints rh > rmin and r2
h ≥ −4α. For α ≤ 3

[ − 1 +√
1 − 16M�/(3π)

]
/(8�), we have a naked singularity because rh ≤ rmin. When

3
[−1+√

1 − 16M�/(3π)
]
/(8�) < α < M/π , there is a critical value of charge

now given by



1602 M. Thibeault et al.

Fig. 3 The stability regions are shown for � = 0 and α/M = −0.1, which implies |Qc|/M = 0.725.
For the upper left figure |Q| = 0; in the upper right figure, |Q| = 0.99|Qc|; in the lower left,
|Q| = 1.01|Qc|; and for the last one |Q| = 2|Qc|

|Qc| = 2
|�|

{
−2 + 3�

(
M
π

− α

)
+ 2

[
1 − �

(
M
π

− α

)]3/2
}1/2

. (25)

The number of horizons are two when |Q| < |Qc|, one (degenerate) for |Q| =
|Qc| and zero if |Q| > |Qc|. When α > M/π we have again a naked singularity.
As it was previously said the value of a0 is taken greater than rmin and rh.

The critical value of charge for fixed α is an increasing function of �, then
for � < 0 its value is smaller than for � = 0. For small values of |�|, which are
the most interesting ones from a physical point of view, a numerical calculation
shows that the stability regions slightly change compared with the case � = 0.
For the sake of brevity, the plots are not included.
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Fig. 4 The stability regions are shown for � = 0 and α/M = 1/π , which implies |Qc|/M = 0. The
left figure corresponds to |Q|/M = 0, and the right one to |Q|/M = 0.1

Fig. 5 The stability regions are shown for � = 0 and α/M = 1.01/π . The left figure corresponds to
|Q| = 0 and the other one to |Q|/M = 0.2

3.3 De Sitter case

The case � > 0 is considerably different from the point of view of the character
of the horizons in the original manifold: for � > 0 a cosmological horizon exists.
Therefore the shell should always be placed inside the cosmological horizon.
The positions of the singular surface and the horizons are obtained again from
Eqs. (23) and (24), respectively. When 0 < � ≤ 3π/(16M) we have that rmin ≥ rh
for 3

[ − 1 − √
1 − 16M�/(3π)

]
/(8�) ≤ α ≤ 3

[ − 1 + √
1 − 16M�/(3π)

]
/(8�),

so there is a naked singularity. With other combinations of the parameters it
is rmin < rh, if rh exists. For M/π − 1/� < α < M/π , besides the cosmolog-
ical horizon, there are two, one or zero additional horizons for |Q| < |Qc|,
|Q| = |Qc| and |Q| > |Qc|, respectively, with the critical value of charge again
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given by Eq. (25). When α < M/π − 1/� or α > M/π there are no horizons
and we have again a naked singularity. As in the other cases, the value of a0 is
taken greater than rmin and rh.

As in the preceding case, |Qc| increases with �, so that the critical value in De
Sitter case is greater than for � = 0. Now there is a change in the values of α for
which the largest regions of stability are found, namely M/π −1/� < α < M/π .
However, the stability analysis for small � does not reveal any remarkable
aspect differing from the case � = 0, except that the stability region corre-
sponding to β2 < 0 becomes limited for large values of the wormhole radius
due to the presence of the cosmological horizon. Again, for the same reason as
in the Anti-De Sitter case, the plots are omitted.

4 Energy conditions and exotic matter

Quantifying the amount of exotic matter has been considered as a way to
characterize the viability of traversable wormholes [11]. Here we shall analyze
the energy conditions and evaluate the total amount of exotic matter for the
wormholes constructed in Sect. 2, in the case of static configurations, i.e. for
a = a0.

The weak energy condition (WEC) states that for any timelike vector uμ it
must be Tμνuμuν ≥ 0; the WEC also implies, by continuity, the null energy
condition (NEC), i.e. that for any null vector kμ it must be Tμνkμkν ≥ 0 [2].
In an orthonormal basis the WEC reads ρ ≥ 0, ρ + pj ≥ 0 ∀j, while the NEC
takes the form ρ + pj ≥ 0 ∀ j. In the case of the wormhole constructed above
with radial pressure pr = 0, we have σ < 0, σ + pr < 0, so that both energy
conditions are violated. The transverse pressure is pt = p and the sign of σ + pt,
instead, is not fixed, but depends on the values of the parameters.

There have been several proposals for quantifying the amount of exotic
matter in the wormhole; two of them are the integrals [6–10]

∫
ρ
√−g d4x,

∫
(ρ + pi)

√−g d4x, (26)

where g is the determinant of the metric tensor. The most usual choice is the
integral including the pressure associated to the violation of the energy condi-
tions:

� =
∫

(ρ + pr)
√−g d4x. (27)

In our case, introducing the new coordinate R = ±(r−a0) with ± corresponding
to each side of the shell, we have

� =
2π∫

0

π∫

0

π∫

0

∞∫

−∞
(ρ + pr)

√−g dRdθ dχ dϕ. (28)
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Because the shell does not exert radial pressure, and the energy density is
located on a surface, so that ρ = δ(R)σ0, then we simply have

� =
2π∫

0

π∫

0

π∫

0

σ
√−g

∣∣
r=a0

dθ dχ dϕ = 4π2a3
0σ0. (29)

Thus we find that

� = −3πa2
0

√
f (a0). (30)

Replacing the explicit form of the metric (6), simple expressions for the behav-
ior of � with the wormhole radius can be obtained for the limiting case a → ∞,
which makes sense only for � ≤ 0 and �α > −4/3. For � = 0 we have

� ≈ −3πa2
0. (31)

For � < 0 the limiting expressions differ depending on the sign of α; for α > 0
we obtain

� ≈ −3πa3
0

2
√

α

[
1 −

√
1 + 4�α

3

]1/2

, (32)

while for α < 0 we have

� ≈ − 3πa3
0

2
√|α|

[√
1 + 4�α

3
− 1

]1/2

. (33)

A natural question is which are the conditions such that the amount of exotic
matter can be reduced. Because � is proportional to σ0, which, as anticipated
in Sect. 2, approaches to zero when the wormhole radius tends to the event
horizon of the original metric, we shall analyze this limit in detail. We consider
values of α for which horizons effectively exist; the number of horizons in the
original manifold is in this case determined by the value of the charge. When
|Q| is less than the critical value of charge |Qc| defined in Sect. 3, there are two
horizons (within this analysis we are not interested in the cosmological horizon
which appears in the case � > 0, which is always much greater than the others
for small �). In this case f (rh) = 0 and f ′(rh) �= 0. For a0 near the event horizon
radius rh, we have

σ0 = − 3
4πrh

√
f ′(rh)

√
a0 − rh + O(a0 − rh)3/2, (34)

p0 = 1
8π

√
f ′(rh)√

a0 − rh
+ O(a0 − rh)1/2, (35)
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Fig. 6 Amount of exotic matter (for � = 0) as a function of the charge, for different values of
the parameter α and the wormhole radius a0. Left: a0 = 2.1rh; right: a0 = 1.1rh. In both cases,
α1 = 0.1M/π , α2 = 0.5M/π , and α3 = 0.9M/π . The horizon radius depends on the value of α.
Note the difference in the scales in the energy axis between the two graphics

so that as a0 approaches rh the total amount of exotic matter � tends to van-
ish, but the pressure takes unlimitedly large values. Instead, when |Q| = |Qc|,
f (rh) = f ′(rh) = 0 and f ′′(rh) �= 0, we have

σ0 = − 3

4
√

2πrh

√
f ′′(rh)(a0 − rh) + O(a0 − rh)2, (36)

p0 =
√

2
8π

√
f ′′(rh) + O(a0 − rh), (37)

so that the amount of exotic matter � can be made as small as desired, keeping
the pressure finite, by taking a0 near rh. One can also verify that if |Q| > |Qc|
then the original metric includes no horizons, and the amount of exotic matter
has a minimum for a0 slightly greater than rmin, while the pressure for this a0
remains finite.

In Fig. 6 we have plotted the total amount of exotic matter for different
choices of the parameters (always with α > 0 and � = 0), in the case |Q| ≤ |Qc|,
so that at least one horizon exists. In each figure, when α changes we keep fixed
the relation between the wormhole radius and the horizon; the range of possi-
ble values of charge is reduced as α increases. We can see that: (1) for a given
value of α and a fixed radius of the wormhole, the total amount of exotic matter
decreases as the charge is made larger; (2) for a given charge, the amount of
exotic matter is reduced by increasing the value of α; (3) the exotic matter
present is reduced by placing the wormhole throat nearer the horizon.

5 Discussion

We have studied five dimensional spherically symmetric thin-shell wormholes
in Einstein–Maxwell theory with the addition of a Gauss–Bonnet term. We have
analyzed the mechanical stability under perturbations preserving the symmetry,
and evaluated the total amount of exotic matter and related its behavior with
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that of the pressure of the shell, as a function of the parameters of the model
and of the theory.

For null α our paper extends to five dimensions the analysis made in previous
works [20–22] in four dimensional gravity. But when α �= 0 new interesting
results are obtained. We have found that the inclusion of the quadratic correc-
tion (Gauss–Bonnet term) allows for much more freedom in the choice of the
configurations to render them stable. In particular, a central positive feature
of the inclusion of the quadratic correction is that, differing from the general
relativity case (α = 0), considerably larger regions of stability appear, even for
vanishing charge; in this sense, we should emphasize that values of the parame-
ter β2 positive and smaller than unity are now possible, while in the case α = 0
this could be achieved only with the aid of large values of charge (Q close to√

3M/π).
Regarding the amount of exotic matter � and pressure, the analysis shows

that, in the case that an event horizon exists in the original manifold from
which we started our thin-shell construction, � can be minimized by choosing
a wormhole radius near the event horizon. In general this is correlated with
an unlimited increase of the pressure, except if the parameters are chosen so
that the inner and outer horizons coincide: in this case the exotic energy can be
reduced as desired, keeping the pressure finite. Besides, we have shown that as
the Gauss–Bonnet term is made more relevant by increasing the parameter α,
the amount of exotic matter results to be substantially reduced.
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