53 research outputs found

    Identification of Candidate Gene Regions in the Rat by Co-Localization of QTLs for Bone Density, Size, Structure and Strength.

    Get PDF
    Susceptibility to osteoporotic fracture is influenced by genetic factors that can be dissected by whole-genome linkage analysis in experimental animal crosses. The aim of this study was to characterize quantitative trait loci (QTLs) for biomechanical and two-dimensional dual-energy X-ray absorptiometry (DXA) phenotypes in reciprocal F2 crosses between diabetic GK and normo-glycemic F344 rat strains and to identify possible co-localization with previously reported QTLs for bone size and structure. The biomechanical measurements of rat tibia included ultimate force, stiffness and work to failure while DXA was used to characterize tibial area, bone mineral content (BMC) and areal bone mineral density (aBMD). F2 progeny (108 males, 98 females) were genotyped with 192 genome-wide markers followed by sex- and reciprocal cross-separated whole-genome QTL analyses. Significant QTLs were identified on chromosome 8 (tibial area; logarithm of odds (LOD) = 4.7 and BMC; LOD = 4.1) in males and on chromosome 1 (stiffness; LOD = 5.5) in females. No QTLs showed significant sex-specific interactions. In contrast, significant cross-specific interactions were identified on chromosome 2 (aBMD; LOD = 4.7) and chromosome 6 (BMC; LOD = 4.8) for males carrying F344mtDNA, and on chromosome 15 (ultimate force; LOD = 3.9) for males carrying GKmtDNA, confirming the effect of reciprocal cross on osteoporosis-related phenotypes. By combining identified QTLs for biomechanical-, size- and qualitative phenotypes (pQCT and 3D CT) from the same population, overlapping regions were detected on chromosomes 1, 3, 4, 6, 8 and 10. These are strong candidate regions in the search for genetic risk factors for osteoporosis

    Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice

    Get PDF
    The menopausal transition in human females, which is driven by a loss of cyclic ovarian function, occurs around age 50 and is thought to underlie the emergence of an array of health problems in aging women. Although mice do not undergo a true menopause, female mice exhibit ovarian failure long before death because of chronological age and subsequently develop many of the same age-associated health complications observed in postmenopausal women. Here we show in mice that inactivation of the proapoptotic Sax gene, which sustains ovarian lifespan into advanced age, extends fertile potential and minimizes many age-related health problems, including bone and muscle loss, excess fat deposition, alopecia, cataracts, deafness, increased anxiety, and selective attention deficit. Further, ovariectomy studies show that the health benefits gained by aged females from Bax deficiency reflect a complex interplay between ovary-dependent and -independent pathways. Importantly, and contrary to popular belief, prolongation of ovarian function into advanced age by Bax deficiency did not lead to an increase in tumor incidence. Thus, the development of methods for postponing ovarian failure at menopause may represent an attractive option for improving the quality of life in aging females. © 2007 by The National Academy of Sciences of the USA

    Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone

    Get PDF
    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0mg/mL) and low-density (<2.0mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality.Chugai Pharmaceutical Co., Ltd

    Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Get PDF
    BACKGROUND:Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3)(-))(n)) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY:The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4)(3-)) concentration while permitting the accumulation of a high total PO(4)(3-) concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO(4)(3-) and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4',6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation. CONCLUSIONS/SIGNIFICANCE:We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled

    Phenotypic Variation of Fluoride Responses between Inbred Strains of Mice

    Get PDF
    Excessive systemic exposure to fluoride (F) can lead to disturbances in bone homeostasis and dental enamel development. We have previously shown strain-specific responses to F in the development of dental fluorosis (DF) and in bone formation/mineralization. The current study was undertaken to further investigate F responsive variations in bone metabolism and to determine possible relationships with DF susceptibility. Seven-week-old male mice from FVB/NJ, C57BL/6J, C3H/HeJ, A/J, 129S1/SvImJ, AKR/J, DBA/2J, and BALB/cByJ inbred strains were exposed to NaF (0 or 50 ppm as F–) in drinking water for 60 days. Sera were collected for F, Ca, Mg, PO4, iPTH, sRANKL, and ALP levels. Bone marrow cells were subjected to ex vivo cell culture for osteoclast potential and CFU colony assays (CFU-fibroblast, CFU-osteoblast, CFU-erythrocyte/granulocyte/macrophage/megakaryocyte, CFU-granulocyte/macrophage, CFU-macrophage, and CFU-granulocyte). Femurs and vertebrae were subjected to micro-CT analyses, biomechanical testing, and F, Mg, and Ca content assays. DF was evaluated using quantitative fluorescence and clinical criteria. Strain-specific responses to F were observed for DF, serum studies, ex vivo cell culture studies, and bone quality. Among the strains, there were no patterns or significant correlations between DF severity and the actions of F on bone homeostasis (serum studies, ex vivo assays, or bone quality parameters). The genetic background continues to play a role in the actions of F on tooth enamel development and bone homeostasis. F exposure led to variable phenotypic responses between strains involving dental enamel development and bone metabolism

    A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages

    Get PDF
    To assess possible differences between the mineral phases of cortical and cancellous bone, the structure and composition of isolated bovine mineral crystals from young (1–3 months) and old (4–5 years) postnatal bovine animals were analyzed by a variety of complementary techniques: chemical analyses, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 31P solid-state magic angle spinning nuclear magnetic resonance spectroscopy (NMR). This combination of methods represents the most complete physicochemical characterization of cancellous and cortical bone mineral completed thus far. Spectra obtained from XRD, FTIR, and 31P NMR all confirmed that the mineral was calcium phosphate in the form of carbonated apatite; however, a crystal maturation process was evident between the young and old and between cancellous and cortical mineral crystals. Two-way analyses of variance showed larger increases of crystal size and Ca/P ratio for the cortical vs. cancellous bone of 1–3 month than the 4–5 year animals. The Ca/(P + CO3) remained nearly constant within a given bone type and in both bone types at 4–5 years. The carbonate and phosphate FTIR band ratios revealed a decrease of labile ions with age and in cortical, relative to cancellous, bone. Overall, the same aging or maturation trends were observed for young vs. old and cancellous vs. cortical. Based on the larger proportion of newly formed bone in cancellous bone relative to cortical bone, the major differences between the cancellous and cortical mineral crystals must be ascribed to differences in average age of the crystals

    Targeting Therapeutics to Bone by Conjugation with Bisphosphonates

    Get PDF
    Bisphosphonates target and bind avidly to the mineral (hydroxyapatite) found in bone. This targeting ability has been&nbsp;exploited to design and prepare bisphosphonate conjugate prodrugs to deliver a wide variety of drug molecules selectively&nbsp; to bones. It is important that conjugates be stable in the blood&nbsp;stream and that conjugate that is not taken up by bone is&nbsp;eliminated rapidly. The prodrugs should release active drug at a&nbsp;rate appropriate so as to provide efficacy. Radiolabelling is the&nbsp;best method to quantify and evaluate pharmacokinetics, tissue&nbsp;distribution, bone uptake and release of the active drug(s).&nbsp;Recent reports have described bisphosphonate conjugates&nbsp;derived from the antiresorptive drug, alendronic acid and&nbsp;anabolic prostanoid drugs that effectively deliver&nbsp;prostaglandins and prostaglandin EP4 receptor agonists to&nbsp;bone and show enhanced anabolic efficacy and tolerability&nbsp;compared to the drugs alone. These conjugate drugs can be&nbsp;dosed infrequently (weekly or bimonthly) whereas the free&nbsp;drugs must be dosed daily

    A Review of Phosphate Mineral Nucleation in Biology and Geobiology

    Get PDF

    Bone histomorphometric changes in children with rheumatic disorders on chronic glucocorticoids

    No full text
    Abstract Background Rheumatic diseases are associated with an increased fracture risk. The tissue level characteristics of the bone involvement in children have not been well elucidated. Our objectives were to describe the bone micro-architectural characteristics in children with rheumatic diseases on chronic glucocorticoids, and to determine associations between micro-architectural findings with clinical and radiological variables. Methods Children on chronic glucocorticoids for an underlying rheumatic disease were referred for evaluation of bone fragility given the presence of vertebral compression fractures. A trans-iliac bone biopsy was performed as part of the clinical assessment. Histomorphometric analysis and quantitative backscattered electron imaging (qBSE) of the biopsy samples were undertaken. Results Data of 15 children (14.0 ± 3.2 years) with a duration of glucocorticoid exposure of 6.2 ± 4.1 years and average prednisone dose of 14.1 ± 6.2 mg/m2/day were assessed. Histomorphometric analyses demonstrated significant decrease in trabecular thickness (p = 0.01), osteoid thickness (p < 0.01), osteoblast surface (p = 0.02) and increase in trabecular separation (p = 0.04) compared to published age-matched normative data. Severity of the trabecular deficit was correlated to glucocorticoid dose, height and body mass index Z score, but not bone mineral density or measures of disease activity. Using qBSE to measure bone mineralization, the subjects were shown to have a heterogeneous and hypermineralized profile, with higher cumulative glucocorticoid dose being associated with greater mineralization (p < 0.01). Conclusions In children with rheumatic diseases presenting with vertebral fractures, there is evidence of abnormal bone matrix mineralization and impairments of bone micro-architecture that correlate to glucocorticoid dose

    Fluoride and Mineralized Tissues

    No full text
    corecore