194 research outputs found
Discovery of a New Soft Gamma Repeater, SGR 1627-41
We report the discovery of a new soft gamma repeater (SGR), SGR 1627-41, and
present BATSE observations of the burst emission and BeppoSAX NFI observations
of the probable persistent X-ray counterpart to this SGR. All but one burst
spectrum are well fit by an optically thin thermal bremsstrahlung (OTTB) model
with kT values between 25 and 35 keV. The spectrum of the X-ray counterpart,
SAX J1635.8-4736, is similar to that of other persistent SGR X-ray
counterparts. We find weak evidence for a periodic signal at 6.41 s in the
light curve for this source. Like other SGRs, this source appears to be
associated with a young supernova remnant G337.0-0.1. Based upon the peak
luminosities of bursts observed from this SGR, we find a lower limit on the
dipole magnetic field of the neutron star B_dipole > 5 * 10^14 Gauss.Comment: 5 pages, 4 figures, submitted to ApJ Letter
Calibration of the GLAST Burst Monitor detectors
The GLAST Burst Monitor (GBM) will augment the capabilities of GLAST for the
detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to >
300 GeV) of the Large Area Telescope (LAT) towards lower energies by 2
BGO-detectors (150 keV to 30 MeV) and 12 NaI(Tl) detectors (10 keV to 1 MeV).
The physical detector response of the GBM instrument for GRBs is determined
with the help of Monte Carlo simulations, which are supported and verified by
on-ground calibration measurements, performed extensively with the individual
detectors at the MPE in 2005. All flight and spare detectors were irradiated
with calibrated radioactive sources in the laboratory (from 14 keV to 4.43
MeV). The energy/channel-relations, the dependences of energy resolution and
effective areas on the energy and the angular responses were measured. Due to
the low number of emission lines of radioactive sources below 100 keV,
calibration measurements in the energy range from 10 keV to 60 keV were
performed with the X-ray radiometry working group of the
Physikalisch-Technische Bundesanstalt (PTB) at the BESSY synchrotron radiation
facility, Berlin.Comment: 2 pages, 1 figure; to appear in the Proc. of the First Int. GLAST
Symp. (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F.Michelson, and C.Meegan,
AIP Conf. Pro
Local and global modes of drug action in biochemical networks
It becomes increasingly accepted that a shift is needed from the traditional target-based approach of drug development to an integrated perspective of drug action in biochemical systems. We here present an integrative analysis of the interactions between drugs and metabolism based on the concept of drug scope. The drug scope represents the set of metabolic compounds and reactions that are potentially affected by a drug. We constructed and analyzed the scopes of all US approved drugs having metabolic targets. Our analysis shows that the distribution of drug scopes is highly uneven, and that drugs can be classified into several categories based on their scopes. Some of them have small scopes corresponding to localized action, while others have large scopes corresponding to potential large-scale systemic action. These groups are well conserved throughout different topologies of the underlying metabolic network. They can furthermore be associated to specific drug therapeutic properties
First-year Results of Broadband Spectroscopy of the Brightest Fermi-GBM Gamma-Ray Bursts
We present here our results of the temporal and spectral analysis of a sample
of 52 bright and hard gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray
Burst Monitor (GBM) during its first year of operation (July 2008-July 2009).
Our sample was selected from a total of 253 GBM GRBs based on each event peak
count rate measured between 0.2 and 40MeV. The final sample comprised 34 long
and 18 short GRBs. These numbers show that the GBM sample contains a much
larger fraction of short GRBs, than the CGRO/BATSE data set, which we explain
as the result of our (different) selection criteria and the improved GBM
trigger algorithms, which favor collection of short, bright GRBs over BATSE. A
first by-product of our selection methodology is the determination of a
detection threshold from the GBM data alone, above which GRBs most likely will
be detected in the MeV/GeV range with the Large Area Telescope (LAT) onboard
Fermi. This predictor will be very useful for future multiwavelength GRB follow
ups with ground and space based observatories. Further we have estimated the
burst durations up to 10MeV and for the first time expanded the duration-energy
relationship in the GRB light curves to high energies. We confirm that GRB
durations decline with energy as a power law with index approximately -0.4, as
was found earlier with the BATSE data and we also notice evidence of a possible
cutoff or break at higher energies. Finally, we performed time-integrated
spectral analysis of all 52 bursts and compared their spectral parameters with
those obtained with the larger data sample of the BATSE data. We find that the
two parameter data sets are similar and confirm that short GRBs are in general
harder than longer ones.Comment: 40 pages, 11 figures, 3 tables, Submitted to Ap
Critical temperature and density of spin-flips in the anisotropic random field Ising model
We present analytical results for the strongly anisotropic random field Ising
model, consisting of weakly interacting spin chains. We combine the mean-field
treatment of interchain interactions with an analytical calculation of the
average chain free energy (``chain mean-field'' approach). The free energy is
found using a mapping on a Brownian motion model. We calculate the order
parameter and give expressions for the critical random magnetic field strength
below which the ground state exhibits long range order and for the critical
temperature as a function of the random magnetic field strength. In the limit
of vanishing interchain interactions, we obtain corrections to the
zero-temperature estimate by Imry and Ma [Phys. Rev. Lett. 35, 1399 (1975)] of
the ground state density of domain walls (spin-flips) in the one-dimensional
random field Ising model. One of the problems to which our model has direct
relevance is the lattice dimerization in disordered quasi-one-dimensional
Peierls materials, such as the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 4 postscript figures, to appear in Phys. Rev.
Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B
Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor (GBM) find
that the spectrum is dominated by the typical Band functional form, which is
usually taken to represent a non-thermal emission component, but also includes
a statistically highly significant thermal spectral contribution. The
simultaneous observation of the thermal and non-thermal components allows us to
confidently identify the two emission components. The fact that these seem to
vary independently favors the idea that the thermal component is of
photospheric origin while the dominant non-thermal emission occurs at larger
radii. Our results imply either a very high efficiency for the non-thermal
process, or a very small size of the region at the base of the flow, both quite
challenging for the standard fireball model. These problems are resolved if the
jet is initially highly magnetized and has a substantial Poynting flux.Comment: 6 pages, 3 figures, 1 table, Accepted for publication in the
Astrophysical Journal Letters November, 23 2010 (Submitted October, 20 2010
Temporal Deconvolution study of Long and Short Gamma-Ray Burst Light curves
The light curves of Gamma-Ray Bursts (GRBs) are believed to result from
internal shocks reflecting the activity of the GRB central engine. Their
temporal deconvolution can reveal potential differences in the properties of
the central engines in the two populations of GRBs which are believed to
originate from the deaths of massive stars (long) and from mergers of compact
objects (short). We present here the results of the temporal analysis of 42
GRBs detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray
Space Telescope. We deconvolved the profiles into pulses, which we fit with
lognormal functions. The distributions of the pulse shape parameters and
intervals between neighboring pulses are distinct for both burst types and also
fit with lognormal functions. We have studied the evolution of these parameters
in different energy bands and found that they differ between long and short
bursts. We discuss the implications of the differences in the temporal
properties of long and short bursts within the framework of the internal shock
model for GRB prompt emission.Comment: 38 pages, 11 figure
Expected Performance of the GLAST Burst Monitor
The GLAST Burst Monitor (GBM) will enhance LAT observations of GRBs by extending the spectral coverage from the LAT threshold down to approx. 8 kev, and will provide a trigger for re-orienting the spacecraft to observe delayed emission from selected bursts outside the LAT field of view. GBM consists of twelve NaI scintillation detectors operating in the 8 kev to 1 MeV energy range and two BGO scintillation detectors operating in the 150 keV to 30 MeV energy range. Detector resolution, effective area, and angular response have been determined by calibrations. Analyses indicate that the on-board burst threshold will be approx. 0.7 photon/cm2/s and the on-board burst localization accuracy will typically be better than 8 degrees
Three necessary conditions for establishing effective sustainable development goals in the Anthropocene
The purpose of the United Nations-guided process to establish Sustainable Development Goals is to galvanize governments and civil society to rise to the interlinked environmental, societal, and economic challenges we face in the Anthropocene. We argue that the process of setting Sustainable Development Goals should take three key aspects into consideration. First, it should embrace an integrated social-ecological system perspective and acknowledge the key dynamics that such systems entail, including the role of ecosystems in sustaining human wellbeing, multiple cross-scale interactions, and uncertain thresholds. Second, the process needs to address trade-offs between the ambition of goals and the feasibility in reaching them, recognizing biophysical, social, and political constraints. Third, the goal-setting exercise and the management of goal implementation need to be guided by existing knowledge about the principles, dynamics, and constraints of social change processes at all scales, from the individual to the global. Combining these three aspects will increase the chances of establishing and achieving effective Sustainable Development Goals
- …