194 research outputs found

    Discovery of a New Soft Gamma Repeater, SGR 1627-41

    Get PDF
    We report the discovery of a new soft gamma repeater (SGR), SGR 1627-41, and present BATSE observations of the burst emission and BeppoSAX NFI observations of the probable persistent X-ray counterpart to this SGR. All but one burst spectrum are well fit by an optically thin thermal bremsstrahlung (OTTB) model with kT values between 25 and 35 keV. The spectrum of the X-ray counterpart, SAX J1635.8-4736, is similar to that of other persistent SGR X-ray counterparts. We find weak evidence for a periodic signal at 6.41 s in the light curve for this source. Like other SGRs, this source appears to be associated with a young supernova remnant G337.0-0.1. Based upon the peak luminosities of bursts observed from this SGR, we find a lower limit on the dipole magnetic field of the neutron star B_dipole > 5 * 10^14 Gauss.Comment: 5 pages, 4 figures, submitted to ApJ Letter

    Calibration of the GLAST Burst Monitor detectors

    Get PDF
    The GLAST Burst Monitor (GBM) will augment the capabilities of GLAST for the detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to > 300 GeV) of the Large Area Telescope (LAT) towards lower energies by 2 BGO-detectors (150 keV to 30 MeV) and 12 NaI(Tl) detectors (10 keV to 1 MeV). The physical detector response of the GBM instrument for GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground calibration measurements, performed extensively with the individual detectors at the MPE in 2005. All flight and spare detectors were irradiated with calibrated radioactive sources in the laboratory (from 14 keV to 4.43 MeV). The energy/channel-relations, the dependences of energy resolution and effective areas on the energy and the angular responses were measured. Due to the low number of emission lines of radioactive sources below 100 keV, calibration measurements in the energy range from 10 keV to 60 keV were performed with the X-ray radiometry working group of the Physikalisch-Technische Bundesanstalt (PTB) at the BESSY synchrotron radiation facility, Berlin.Comment: 2 pages, 1 figure; to appear in the Proc. of the First Int. GLAST Symp. (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F.Michelson, and C.Meegan, AIP Conf. Pro

    Local and global modes of drug action in biochemical networks

    Get PDF
    It becomes increasingly accepted that a shift is needed from the traditional target-based approach of drug development to an integrated perspective of drug action in biochemical systems. We here present an integrative analysis of the interactions between drugs and metabolism based on the concept of drug scope. The drug scope represents the set of metabolic compounds and reactions that are potentially affected by a drug. We constructed and analyzed the scopes of all US approved drugs having metabolic targets. Our analysis shows that the distribution of drug scopes is highly uneven, and that drugs can be classified into several categories based on their scopes. Some of them have small scopes corresponding to localized action, while others have large scopes corresponding to potential large-scale systemic action. These groups are well conserved throughout different topologies of the underlying metabolic network. They can furthermore be associated to specific drug therapeutic properties

    First-year Results of Broadband Spectroscopy of the Brightest Fermi-GBM Gamma-Ray Bursts

    Full text link
    We present here our results of the temporal and spectral analysis of a sample of 52 bright and hard gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM) during its first year of operation (July 2008-July 2009). Our sample was selected from a total of 253 GBM GRBs based on each event peak count rate measured between 0.2 and 40MeV. The final sample comprised 34 long and 18 short GRBs. These numbers show that the GBM sample contains a much larger fraction of short GRBs, than the CGRO/BATSE data set, which we explain as the result of our (different) selection criteria and the improved GBM trigger algorithms, which favor collection of short, bright GRBs over BATSE. A first by-product of our selection methodology is the determination of a detection threshold from the GBM data alone, above which GRBs most likely will be detected in the MeV/GeV range with the Large Area Telescope (LAT) onboard Fermi. This predictor will be very useful for future multiwavelength GRB follow ups with ground and space based observatories. Further we have estimated the burst durations up to 10MeV and for the first time expanded the duration-energy relationship in the GRB light curves to high energies. We confirm that GRB durations decline with energy as a power law with index approximately -0.4, as was found earlier with the BATSE data and we also notice evidence of a possible cutoff or break at higher energies. Finally, we performed time-integrated spectral analysis of all 52 bursts and compared their spectral parameters with those obtained with the larger data sample of the BATSE data. We find that the two parameter data sets are similar and confirm that short GRBs are in general harder than longer ones.Comment: 40 pages, 11 figures, 3 tables, Submitted to Ap

    Critical temperature and density of spin-flips in the anisotropic random field Ising model

    Get PDF
    We present analytical results for the strongly anisotropic random field Ising model, consisting of weakly interacting spin chains. We combine the mean-field treatment of interchain interactions with an analytical calculation of the average chain free energy (``chain mean-field'' approach). The free energy is found using a mapping on a Brownian motion model. We calculate the order parameter and give expressions for the critical random magnetic field strength below which the ground state exhibits long range order and for the critical temperature as a function of the random magnetic field strength. In the limit of vanishing interchain interactions, we obtain corrections to the zero-temperature estimate by Imry and Ma [Phys. Rev. Lett. 35, 1399 (1975)] of the ground state density of domain walls (spin-flips) in the one-dimensional random field Ising model. One of the problems to which our model has direct relevance is the lattice dimerization in disordered quasi-one-dimensional Peierls materials, such as the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 4 postscript figures, to appear in Phys. Rev.

    Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B

    Full text link
    Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor (GBM) find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process, or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.Comment: 6 pages, 3 figures, 1 table, Accepted for publication in the Astrophysical Journal Letters November, 23 2010 (Submitted October, 20 2010

    Temporal Deconvolution study of Long and Short Gamma-Ray Burst Light curves

    Full text link
    The light curves of Gamma-Ray Bursts (GRBs) are believed to result from internal shocks reflecting the activity of the GRB central engine. Their temporal deconvolution can reveal potential differences in the properties of the central engines in the two populations of GRBs which are believed to originate from the deaths of massive stars (long) and from mergers of compact objects (short). We present here the results of the temporal analysis of 42 GRBs detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope. We deconvolved the profiles into pulses, which we fit with lognormal functions. The distributions of the pulse shape parameters and intervals between neighboring pulses are distinct for both burst types and also fit with lognormal functions. We have studied the evolution of these parameters in different energy bands and found that they differ between long and short bursts. We discuss the implications of the differences in the temporal properties of long and short bursts within the framework of the internal shock model for GRB prompt emission.Comment: 38 pages, 11 figure

    Expected Performance of the GLAST Burst Monitor

    Get PDF
    The GLAST Burst Monitor (GBM) will enhance LAT observations of GRBs by extending the spectral coverage from the LAT threshold down to approx. 8 kev, and will provide a trigger for re-orienting the spacecraft to observe delayed emission from selected bursts outside the LAT field of view. GBM consists of twelve NaI scintillation detectors operating in the 8 kev to 1 MeV energy range and two BGO scintillation detectors operating in the 150 keV to 30 MeV energy range. Detector resolution, effective area, and angular response have been determined by calibrations. Analyses indicate that the on-board burst threshold will be approx. 0.7 photon/cm2/s and the on-board burst localization accuracy will typically be better than 8 degrees

    Three necessary conditions for establishing effective sustainable development goals in the Anthropocene

    Get PDF
    The purpose of the United Nations-guided process to establish Sustainable Development Goals is to galvanize governments and civil society to rise to the interlinked environmental, societal, and economic challenges we face in the Anthropocene. We argue that the process of setting Sustainable Development Goals should take three key aspects into consideration. First, it should embrace an integrated social-ecological system perspective and acknowledge the key dynamics that such systems entail, including the role of ecosystems in sustaining human wellbeing, multiple cross-scale interactions, and uncertain thresholds. Second, the process needs to address trade-offs between the ambition of goals and the feasibility in reaching them, recognizing biophysical, social, and political constraints. Third, the goal-setting exercise and the management of goal implementation need to be guided by existing knowledge about the principles, dynamics, and constraints of social change processes at all scales, from the individual to the global. Combining these three aspects will increase the chances of establishing and achieving effective Sustainable Development Goals
    corecore