52 research outputs found

    Caffeic Acid Phenethyl Ester and Its Amide Analogue Are Potent Inhibitors of Leukotriene Biosynthesis in Human Polymorphonuclear Leukocytes

    Get PDF
    BACKGROUND: 5-lipoxygenase (5-LO) catalyses the transformation of arachidonic acid (AA) into leukotrienes (LTs), which are important lipid mediators of inflammation. LTs have been directly implicated in inflammatory diseases like asthma, atherosclerosis and rheumatoid arthritis; therefore inhibition of LT biosynthesis is a strategy for the treatment of these chronic diseases. METHODOLOGY/PRINCIPAL FINDINGS: Analogues of caffeic acid, including the naturally-occurring caffeic acid phenethyl ester (CAPE), were synthesized and evaluated for their capacity to inhibit 5-LO and LTs biosynthesis in human polymorphonuclear leukocytes (PMNL) and whole blood. Anti-free radical and anti-oxidant activities of the compounds were also measured. Caffeic acid did not inhibit 5-LO activity or LT biosynthesis at concentrations up to 10 µM. CAPE inhibited 5-LO activity (IC(50) 0.13 µM, 95% CI 0.08-0.23 µM) more effectively than the clinically-approved 5-LO inhibitor zileuton (IC(50) 3.5 µM, 95% CI 2.3-5.4 µM). CAPE was also more effective than zileuton for the inhibition of LT biosynthesis in PMNL but the compounds were equipotent in whole blood. The activity of the amide analogue of CAPE was similar to that of zileuton. Inhibition of LT biosynthesis by CAPE was the result of the inhibition of 5-LO and of AA release. Caffeic acid, CAPE and its amide analog were free radical scavengers and antioxidants with IC(50) values in the low µM range; however, the phenethyl moiety of CAPE was required for effective inhibition of 5-LO and LT biosynthesis. CONCLUSIONS: CAPE is a potent LT biosynthesis inhibitor that blocks 5-LO activity and AA release. The CAPE structure can be used as a framework for the rational design of stable and potent inhibitors of LT biosynthesis

    New Caffeic Acid Phenylethyl Ester Analogs Bearing Substituted Triazole: Synthesis and Structure-Activity Relationship Study towards 5-Lipoxygenase Inhibition

    Get PDF
    Leukotrienes are biosynthesized by the conversion of arachidonic acid by 5-Lipoxygenase and play a key role in many inflammatory disorders. Inspired by caffeic acid phenylethyl ester (CAPE) (2) and an analog carrying a triazole substituted by cinnamoyl and 5-LO inhibitors recently reported by our team, sixteen new CAPE analogs bearing substituted triazole were synthesized by copper catalyzed Huisgen 1,3-dipolar cycloaddition. Compound 10e, an analog bearing p-CF3 phenethyl substituted triazole, was equivalent to CAPE (2) but clearly surpassed Zileuton (2), the only approved 5-LO inhibitor. Substitution of the phenethyl moiety by cyclohexylethyl, as with 12g, clearly increased 5-LO inhibition which confirms the importance of hydrophobic interactions. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds as leukotrienes biosynthesis inhibitors

    Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Get PDF
    Two novel boron compounds containing caffeic acid phenethyl ester (CAPE) derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE

    Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Get PDF
    International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates

    Dietary Buglossoides Arvensis Oil Increases Circulating n-3 Polyunsaturated Fatty Acids in a Dose-Dependent Manner and Enhances Lipopolysaccharide-Stimulated Whole Blood Interleukin-10—A Randomized Placebo-Controlled Trial

    No full text
    Buglossoides arvensis (Ahiflower) oil is a dietary oil rich in stearidonic acid (20% SDA; 18:4 n-3). The present randomized, double blind, placebo-controlled clinical trial investigated the effects of three Ahiflower oil dosages on omega-3 polyunsaturated fatty acid (PUFA) content of plasma and mononuclear cells (MCs) and of the highest Ahiflower dosage on stimulated cytokine production in blood. Healthy subjects (n = 88) consumed 9.7 mL per day for 28 days of 100% high oleic sunflower oil (HOSO); 30% Ahiflower oil (Ahi) + 70% HOSO; 60% Ahi + 40% HOSO; and 100% Ahi. No clinically significant changes in blood and urine chemistries, blood lipid profiles, hepatic and renal function tests nor hematology were measured. Linear mixed models (repeated measures design) probed for differences in time, and time × treatment interactions. Amongst significant changes, plasma and MC eicosapentaenoic acid (EPA, 20:5 n-3) levels increased from baseline at day 28 in all Ahiflower groups (p < 0.05) and the increase was greater in all Ahiflower groups compared to the HOSO control (time × treatment interactions; p < 0.05). Similar results were obtained for α-linolenic acid (ALA, 18:3 n-3), eicosatetraenoic acid (ETA, 20:4 n-3), and docosapentaenoic acid (DPA, 22:5 n-3) content; but not docosahexaenoic acid (DHA, 22:6 n-3). Production of interleukin-10 (IL-10) was increased in the 100% Ahiflower oil group compared to 100% HOSO group (p < 0.05). IL-10 production was also increased in lipopolysaccharide (LPS)-stimulated M2-differentiated THP-1 macrophage-like cells in the presence of 20:4 n-3 or EPA (p < 0.05). Overall; this indicates that the consumption of Ahiflower oil is associated with an anti-inflammatory phenotype in healthy subjects

    Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory.

    No full text
    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups' locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, their learning and memory processes were assessed within a Morris Water Maze. The behavioural and cognitive tests revealed that the iron deficient pup group had increased locomotor activity, but solely on postnatal day 40, and that there were no group differences in the Morris Water Maze. In the general discussion, we propose that prenatal iron deficiency induces an increase in nervousness due to anxiety in the progeny, which, in the current study, resulted in an increase of locomotor activity

    Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils.

    No full text
    ABSTRACT 5-Lipoxygenase (5-LO) catalyzes the transformation of arachidonic acid to leukotrienes (LT). In stimulated human PMN, activation of 5-LO involves calcium, p38 MAP kinase (p38) phosphorylation, and translocation of 5-LO from the cytosol to nuclear membranes containing the 5-LO activating protein (FLAP). In this study, cAMP-elevating agents such as isoproterenol, prostaglandin E 2 , CGS-21680 (an adenosine A 2a receptor agonist), the type IV phosphodiesterase inhibitor RO 20-1724, the adenylate cyclase activator forskolin, and the Gsprotein activator cholera toxin all inhibited LT biosynthesis and 5-LO translocation to the nucleus in cytokine-primed human PMN stimulated with platelet-activating factor and in human PMN stimulated with the endomembrane Ca 2ϩ -ATPase blocker thapsigargin. Furthermore, monophosphorothioate analogs of cAMP, which activate protein kinase A (PKA), also inhibited LT biosynthesis and 5-LO translocation in stimulated cells. Treatment of PMN with CGS-21680 also prevented the phosphorylation of p38 by thapsigargin. Treatment of PMN with the PKA inhibitors H-89 and KT-5720 prevented the inhibitory effect of cAMP-elevating agents on LT biosynthesis, 5-LO translocation, and p38 phosphorylation, whereas the p38 inhibitor SB 203,580 dose-dependently inhibited arachidonic acidinduced LT biosynthesis. The 5-LO translocation was also inhibitable by the FLAP antagonist MK-0591 and correlated with LT biosynthesis in all experimental conditions tested. These results indicate that cAMP-mediated PKA activation in PMN results in the concomitant inhibition of 5-LO translocation and LT biosynthesis and support a role of p38 in the signaling pathway involved. This represents the first physiological downregulation mechanism of 5-LO translocation in human PMN. Leukotrienes (LT) are lipid mediators of inflammation that have been implicated in a number of pathological conditions including allergy, asthma, and other inflammatory diseases. The biosynthesis of LT involves the sequential release of arachidonic acid (AA) from cellular glycerolipids and its initial transformation by 5-lipoxygenase (5-LO), which catalyzes both the hydroperoxydation of AA at carbon 5 and a dehydrase reaction resulting in the formation of LTA 4 . In human PMN, LTA 4 is further metabolized to the potent PMN activator and chemoattractant LTB 4 by the LTA 4 hydrolase. Pharmacological agents such as Ca 2ϩ ionophores or the Ca 2ϩ -ATPase blocker thapsigargin are routinely used as tools to study the regulation of AA metabolism in human PMN because they are potent inducers of LT biosynthesis. Physiological ligands such as platelet-activating factor (PAF) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) also stimulate LT biosynthesis in human PMN, and this biosynthesis is strongly potentiated when cells are pre-exposed to priming agents such as TNF-␣, GM-CSF, or lipopolysaccharides N.F. and M.E.S. contributed equally to this work. ABBREVIATIONS: LT, leukotriene; AA, arachidonic acid; 5-LO, 5-lipoxygenase; PMN, polymorphonuclear neutrophils; PAF, platelet-activating factor; fMLP, N-formyl-methionyl-leucyl-phenylalanine; TNF-␣, tumor necrosis factor-␣; GM-CSF, granulocyte-macrophage colony-stimulating factor; cPLA 2 , type IV cytosolic phospholipase A 2; PDE, phosphodiesterase ; PG, prostaglandin; RO 20-1724, 4-[(3-butoxy-4-methoxypheny
    corecore