130 research outputs found
Self-force via Green functions and worldline integration
A compact object moving in curved spacetime interacts with its own
gravitational field. This leads to both dissipative and conservative
corrections to the motion, which can be interpreted as a self-force acting on
the object. The original formalism describing this self-force relied heavily on
the Green function of the linear differential operator that governs
gravitational perturbations. However, because the global calculation of Green
functions in non-trivial black hole spacetimes has been an open problem until
recently, alternative methods were established to calculate self-force effects
using sophisticated regularization techniques that avoid the computation of the
global Green function. We present a method for calculating the self-force that
employs the global Green function and is therefore closely modeled after the
original self-force expressions. Our quantitative method involves two stages:
(i) numerical approximation of the retarded Green function in the background
spacetime; (ii) evaluation of convolution integrals along the worldline of the
object. This novel approach can be used along arbitrary worldlines, including
those currently inaccessible to more established computational techniques.
Furthermore, it yields geometrical insight into the contributions to
self-interaction from curved geometry (back-scattering) and trapping of null
geodesics. We demonstrate the method on the motion of a scalar charge in
Schwarzschild spacetime. This toy model retains the physical history-dependence
of the self-force but avoids gauge issues and allows us to focus on basic
principles. We compute the self-field and self-force for many worldlines
including accelerated circular orbits, eccentric orbits at the separatrix, and
radial infall. This method, closely modeled after the original formalism,
provides a promising complementary approach to the self-force problem.Comment: 18 pages, 9 figure
Vector Competence of Ixodes scapularis and Ixodes ricinus (Acari: Ixodidae) for Three Genospecies of Borrelia burgdorferi
The vector competence of 2 tick species, Ixodes ricinus (L.) and Ixodes scapularis Say, was determined and compared for 3 genospecies of Borrelia burgdorferi. The 3 genospecies of B. burgdorferi used in the following experiments were Borrelia burgdorferi sensu stricto (B-31 and B-31.D1 clone), Borrelia afzelii (strain Pgau.C3), and Borrelia garinii (strain VS286 and VSBP). Spirochetes from all 5 strains were inoculated intradermally into outbred mice; larval ticks of both species were subsequently fed on those mice and replete larvae were assayed for infection by culture in BSK-H media every 7 d for 4 wk. Infection frequencies in I. scapularis exposed to the 5 strains were as follows: B-31 (90%), B-31.D1 (83%), Pgau.C3 (87%), VS286 (10%), and VSBP (5%). The comparable infection frequencies for /. ricinus were B-31 (3%), B-31.D1 (3%), Pgau.C3 (90%), VS286 (5%), and VSBP (3%). Resultant nymphal /. scapularis successfully transmitted B-31, B-31.D1, Pgau.C3, and VS286 to outbred mice. /. ricinus nymphs transmitted Pgau.C3 and VS286. Both species failed to transmit strain VSB
Quantization of fermions on Kerr space-time
We study a quantum fermion field on a background nonextremal Kerr black hole. We discuss the definition of the standard black hole quantum states (Boulware, Unruh, and Hartle-Hawking), focussing particularly on the differences between fermionic and bosonic quantum field theory. Since all fermion modes (both particle and antiparticle) have positive norm, there is much greater flexibility in how quantum states are defined compared with the bosonic case. In particular, we are able to define a candidate Boulware-like state, empty at both past and future null infinity, and a candidate Hartle-Hawking-like equilibrium state, representing a thermal bath of fermions surrounding the black hole. Neither of these states have analogues for bosons on a nonextremal Kerr black hole and both have physically attractive regularity properties. We also define a number of other quantum states, numerically compute differences in expectation values of the fermion current and stress-energy tensor between two states, and discuss their physical properties
European retrospective study of real-life haemophilia treatment
IntroductionHaemophilia treatment varies significantly between individuals, countries and regions and details of bleed rates, factor consumption and injection frequency are often not available.AimTo provide an overview of the FVIII/FIX treatment practice and outcome for patients with haemophilia A (HA) or haemophilia B (HB) across Europe.MethodsNon‐interventional, 12‐month retrospective study where anonymized data were retrieved from haemophilia centres/registers in Belgium, France, Germany, Italy, Spain, Sweden and the United Kingdom. Male patients (all ages) receiving coagulation factor treatment 24 months prior to the study, with basal FVIII/FIX levels ≤5 IU dL−1, without inhibitors, were included. Data were summarized descriptively.ResultsIn total, 1346 patients with HA and 312 with HB were included in the analysis; 75% and 57% had severe disease (FVIII/FIX < 1 IU dL−1) respectively. Prophylaxis was most common for severe haemophilia, especially for children, whereas on‐demand treatment was more common for moderate haemophilia in most countries. The mean (SD) prescribed prophylactic treatment ranged from 67.9 (30.4) to 108.4 (78.1) (HA) and 32.3 (10.2) to 97.7 (32.1) (HB) IU kg−1 per week, across countries. Most patients on prophylaxis were treated ≥3 times/week (HA) or two times/week (HB). The median annual bleeding rate (ABR) for patients on prophylaxis ranged from 1.0 to 4.0 for severe HA, and from 1.0 to 6.0 for severe HB, while those with moderate haemophilia generally had slightly higher ABRs. Median ABRs for on‐demand‐treated severe HA ranged from 4.5 to 18.0, and for HB, 1.5 to 14.0.ConclusionTreatment practice varied greatly between centres and countries and patients treated on‐demand and prophylactically both experienced bleeds, emphasizing the need for further optimization of care
Altering micro-environments to change population health behaviour: towards an evidence base for choice architecture interventions.
BACKGROUND: The idea that behaviour can be influenced at population level by altering the environments within which people make choices (choice architecture) has gained traction in policy circles. However, empirical evidence to support this idea is limited, especially its application to changing health behaviour. We propose an evidence-based definition and typology of choice architecture interventions that have been implemented within small-scale micro-environments and evaluated for their effects on four key sets of health behaviours: diet, physical activity, alcohol and tobacco use. DISCUSSION: We argue that the limitations of the evidence base are due not simply to an absence of evidence, but also to a prior lack of definitional and conceptual clarity concerning applications of choice architecture to public health intervention. This has hampered the potential for systematic assessment of existing evidence. By seeking to address this issue, we demonstrate how our definition and typology have enabled systematic identification and preliminary mapping of a large body of available evidence for the effects of choice architecture interventions. We discuss key implications for further primary research, evidence synthesis and conceptual development to support the design and evaluation of such interventions. SUMMARY: This conceptual groundwork provides a foundation for future research to investigate the effectiveness of choice architecture interventions within micro-environments for changing health behaviour. The approach we used may also serve as a template for mapping other under-explored fields of enquiry
Piezo1 integration of vascular architecture with physiological force
The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology
The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control
- …