59 research outputs found

    Cross-reactivity of B and T cells: desired in influenza vaccine responses, feared in autoimmune diseases

    Get PDF
    Innate immune mechanisms are very efficient at mounting rapid immune responses at the site of infection. Complete clearance of a pathogen and long-lasting protection through memory formation requires the adaptive immune system. To be able to cope with the large variety of pathogens we encounter, T and B cells acquire an almost infinite number of specificities by VDJ-recombination and somatic hypermutation. However, not all recombinations are equally likely to occur and the majority of lymphocyte clones will never be released from the thymus or bone marrow due to negative selection. T cells also need to recognize host HLA-proteins, adding further constraints. Therefore, immune cell diversity is more restricted than theoretically possible. A certain redundancy is induced by the fact that a T or B cell clone may recognize multiple epitopes, albeit with different affinities, a feature termed cross-reactivity. In a vaccine against a genetically diverse pathogen, cross-reactivity of vaccine-induced immune cells is desirable. An ideal vaccine enables the host to mount an immune response not only against the vaccine strain but also against naturally occurring variants that may be antigenically different. Influenza virus is one of the most prevalent human pathogens and of high economic relevance. The ‘success’ of influenza virus is tightly linked to its extraordinary ability to evolve – that is, evading the host’s immune system – while still maintaining its integrity and virulence. Annually updated influenza vaccines provide some protection against infection. However, vaccine efficacy is strongly reduced when there is an antigenic mismatch between vaccine strain and predominant circulating virus. We hypothesized that the cross-reactivity of the influenza vaccine response is affected by the individual B cell repertoire and wanted to test whether low cross-reactivity associates with a narrow repertoire. A narrow antibody repertoire could be related to the previous infection history or to repetitive vaccination with very similar influenza vaccine strains. Consequently, this may lead to higher susceptibility to emerging viral variants. The breadth and degree of antigen-specificity of the B cell receptor (BCR) repertoire can be assessed by sequencing the immunoglobulin heavy chains before and after vaccination. We tested this hypothesis by analyzing samples from a previous cohort of influenza-vaccinated healthy subjects and aimed to extend our findings by conducting a prospective clinical influenza vaccination study in individuals with known vaccination history. Since the composition of the influenza vaccine is an active debate in the field, our results could inform on both strain selection and better vaccination strategies. Cross-reactivity can be beneficial in the case of vaccination but may be harmful if cross-reactive lymphocytes target self-structures, as it is the case in autoimmunity. While B cells recognize native macromolecular structures, T cells mainly respond towards peptides displayed on MHC of antigen-presenting cells (APC). In Giant Cell Arteritis (GCA), a disease affecting medium-sized and large arteries, considerable infiltration of CD4+ T cells is found in the affected vessels. Several lines of evidence suggest that these T cells are not just merely attracted to a site of inflammation, but rather might recognize a specific antigen. Whether this is a primary response against a microbial or self-protein or infection-induced cross-reactivity to self-proteins is currently unknown. In order to investigate antigen involvement in GCA pathogenesis, we used an antigen-centered approach to screen for T cell reactivity against self- and candidate viral antigens. Complementary, we used a T cell receptor (TCR)-based approach in order to investigate expanded clones and enriched CDR3-motifs in the affected arteries. Finally, taking advantage of our prospective GCA cohort study at the University Hospital Basel, we tested the antibody reactivity in newly diagnosed GCA patients against a self-protein proposed by others to be important in GCA pathogenesis. These results will help us to better understand the (early) disease pathogenesis and to find possible druggable pathways

    Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Syringolin A, an important virulence factor in the interaction of the phytopathogenic bacterium <it>Pseudomonas syringae </it>pv. <it>syringae </it>B728a with its host plant <it>Phaseolus vulgaris </it>(bean), was recently shown to irreversibly inhibit eukaryotic proteasomes by a novel mechanism. Syringolin A is synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase and consists of a tripeptide part including a twelve-membered ring with an N-terminal valine that is joined to a second valine via a very unusual ureido group. Analysis of sequence and architecture of the syringolin A synthetase gene cluster with the five open reading frames <it>sylA-sylE </it>allowed to formulate a biosynthesis model that explained all structural features of the tripeptide part of syringolin A but left the biosynthesis of the unusual ureido group unaccounted for.</p> <p>Results</p> <p>We have cloned a 22 kb genomic fragment containing the <it>sylA-sylE </it>gene cluster but no other complete gene into the broad host range cosmid pLAFR3. Transfer of the recombinant cosmid into <it>Pseudomonas putida </it>and <it>P. syringae </it>pv. <it>syringae </it>SM was sufficient to direct the biosynthesis of <it>bona fide </it>syringolin A in these heterologous organisms whose genomes do not contain homologous genes. NMR analysis of syringolin A isolated from cultures grown in the presence of NaH<sup>13</sup>CO<sub>3 </sub>revealed preferential <sup>13</sup>C-labeling at the ureido carbonyl position.</p> <p>Conclusion</p> <p>The results show that no additional syringolin A-specific genes were needed for the biosynthesis of the enigmatic ureido group joining two amino acids. They reveal the source of the ureido carbonyl group to be bicarbonate/carbon dioxide, which we hypothesize is incorporated by carbamylation of valine mediated by the <it>sylC </it>gene product(s). A similar mechanism may also play a role in the biosynthesis of other ureido-group-containing NRPS products known largely from cyanobacteria.</p

    Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vasopressin is one of the most important physiological stress and shock hormones. Copeptin, a stable vasopressin precursor, is a promising sepsis marker in adults. In contrast, its involvement in neonatal diseases remains unknown. The aim of this study was to establish copeptin concentrations in neonates of different stress states such as sepsis, chorioamnionitis and asphyxia.</p> <p>Methods</p> <p>Copeptin cord blood concentration was determined using the BRAHMS kryptor assay. Neonates with early-onset sepsis (EOS, n = 30), chorioamnionitis (n = 33) and asphyxia (n = 25) were compared to a control group of preterm and term (n = 155) neonates.</p> <p>Results</p> <p>Median copeptin concentration in cord blood was 36 pmol/l ranging from undetectable to 5498 pmol/l (IQR 7 - 419). Copeptin cord blood concentrations were non-normally distributed and increased with gestational age (p < 0.0001). Neonates born after vaginal compared to cesarean delivery had elevated copeptin levels (p < 0.0001). Copeptin correlated strongly with umbilical artery pH (Spearman's Rho -0.50, p < 0.0001), umbilical artery base excess (Rho -0.67, p < 0.0001) and with lactate at NICU admission (Rho 0.54, p < 0.0001). No difference was found when comparing copeptin cord blood concentrations between neonates with EOS and controls (multivariate p = 0.30). The highest copeptin concentrations were found in neonates with asphyxia (median 993 pmol/l). Receiver-operating-characteristic curve analysis showed that copeptin cord blood concentrations were strongly associated with asphyxia: the area under the curve resulted at 0.91 (95%-CI 0.87-0.96, p < 0.0001). A cut-off of 400 pmol/l had a sensitivity of 92% and a specifity of 82% for asphyxia as defined in this study.</p> <p>Conclusions</p> <p>Copeptin concentrations were strongly related to factors associated with perinatal stress such as birth acidosis, asphyxia and vaginal delivery. In contrast, copeptin appears to be unsuitable for the diagnosis of EOS.</p

    SAKK 24/09: safety and tolerability of bevacizumab plus paclitaxel vs. bevacizumab plus metronomic cyclophosphamide and capecitabine as first-line therapy in patients with HER2-negative advanced stage breast cancer - a multicenter, randomized phase III trial.

    Get PDF
    BACKGROUND: Adding bevacizumab to chemotherapy improves response rates and progression-free survival (PFS) in metastatic breast cancer (mBC). We aimed to demonstrate decreased toxicity with metronomic chemotherapy/bevacizumab compared with paclitaxel/bevacizumab. METHODS: This multicenter, randomized phase III trial compared bevacizumab with either paclitaxel (arm A) or daily oral capecitabine-cyclophosphamide (arm B) as first-line treatment in patients with HER2-negative advanced breast cancer. The primary endpoint was the incidence of selected grade 3-5 adverse events (AE) including: febrile neutropenia, infection, sensory/motor neuropathy, and mucositis. Secondary endpoints included objective response rate, disease control rate, PFS, overall survival (OS), quality of life (QoL), and pharmacoeconomics. The study was registered prospectively with ClinicalTrials.gov, number NCT01131195 on May 25, 2010. RESULTS: Between September 2010 and December 2012, 147 patients were included at 22 centers. The incidence of primary endpoint-defining AEs was similar in arm A (25 % [18/71]; 95 % CI 15-35 %) and arm B (24 % [16/68]; 95 % CI 13-34 %; P = 0.96). Objective response rates were 58 % (42/73; 95 % CI 0.46-0.69) and 50 % (37/74; 95 % CI 0.39-0.61) in arms A and B, respectively (P = 0.45). Median PFS was 10.3 months (95 % CI 8.7-11.3) in arm A and 8.5 months (95 % CI 6.5-11.9) in arm B (P = 0.90). Other secondary efficacy endpoints were not significantly different between study arms. The only statistically significant differences in QoL were less hair loss and less numbness in arm B. Treatment costs between the two arms were equivalent. CONCLUSION: This trial failed to meet its primary endpoint of a reduced rate of prespecified grade 3-5 AEs with metronomic bevacizumab, cyclophosphamide and capecitabine

    Evaluation der Ökomassnahmen: Bereich BiodiversitĂ€t

    Get PDF
    1993 fĂŒhrte der Bund ökologische Direktzahlungen ein; seit 1999 ist die Erbringung des ökologischen Leistungsnachweises (ÖLN) durch die Landwirtschaftsbetriebe die Voraussetzung zum Bezug von Direktzahlungen. Heute werden 97 % der landwirtschaftlichen NutzflĂ€che nach den Regeln des ÖLN bewirtschaftet. Die wichtigste Massnahme des ÖLN, welche einen Einfluss auf die BiodiversitĂ€t hat, ist, dass die Betriebe 7 % ihrer landwirtschaftlichen NutzflĂ€che (LN) als ökologische AusgleichsflĂ€chen (öAF) auszuweisen haben (bei Spezialkulturen 3,5 %). Weitere Anforderungen des ÖLN (ausgeglichene NĂ€hrstoffbilanz, geregelte Fruchtfolge, Bodenschutz, gezielter Einsatz von Pflanzenschutzmitteln, tiergerechte Haltung der Nutztiere) können ebenfalls einen Einfluss haben, stehen jedoch weniger im Vordergrund

    Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies

    Get PDF
    Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus KjĂžller, Tamir Klein, Michael Kleyer, Jitka KlimeĆĄovĂĄ, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf KĂŒhn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan LlusiĂ , Madelon Lohbeck, Álvaro LĂłpez-GarcĂ­a, Gabriela Lopez-Gonzalez, Zdeƈka LososovĂĄ, FrĂ©dĂ©rique Louault, BalĂĄzs A. LukĂĄcs, Petr LukeĆĄ, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki MĂ€kelĂ€, Harri MĂ€kinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina MartĂ­nez-Garza, Jordi MartĂ­nez-Vilalta, Tereza MaĆĄkovĂĄ, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, CĂ©line Meredieu, Julie Messier, Ilona MĂ©szĂĄros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila MolnĂĄr V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka MoravcovĂĄ, Alvaro Moreno-MartĂ­nez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina MĂŒller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis PĂ€rtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, ValĂ©rio D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr PyĆĄek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime RĂ©jou-MĂ©chain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja RĂŒger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-GarcĂ­a, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun SiebenkĂ€s, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, GrĂ©gory Sonnier, Mia Vedel SĂžrensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana SvitkovĂĄ, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, RubĂ©n Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, LubomĂ­r TichĂœ, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, PĂ©ter Török, Tonantzin Tarin, JosĂ© M. Torres-Ruiz, BĂ©la TĂłthmĂ©rĂ©sz, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim AndrĂ© Vanselow, Angelica VĂ„rhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime VillacĂ­s, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, KĂĄtia Janaina Zanini, Amy E. Zanne, David ZelenĂœ, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia ZiemiƄska, Chad R. Zirbel, Georg Zizka, IriĂ© Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et SociĂ©tĂ©'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    The quest for planarizing distortions in hydrocarbons: two stereoisomeric 4.5.5.5 fenestranes

    No full text
    According to semiempirical calculations the planarizing distortions in the central C(C)4 substructure of fenestranes, represented as 1, can be enhanced by a variety of structural modifications. Based on these results we selected the 7-hydroxy-c,c,c,c- and c,t,c,c[4.5.5.5]fenestranones 13 and 16 as precursors for the introduction of a bridgehead double bond. The efficient synthesis of these precursors and their chemical transformations are reported. Attempts to activate the hydroxyl group in 16 for introduction of a bridgehead double bond led to the rearrangement of the [4.5.5.5]fenestrane to a triquinacane skeleton. (C) 2011 Elsevier Ltd. All rights reserved

    A minimally invasive two-stage crown lengthening procedure applying a tunneling technique

    Full text link
    AIM The purpose of the present retrospective case series was to introduce a minimally invasive two-stage flapless crown lengthening procedure where a gingivectomy was avoided or minimized by reducing the bone height through a tunneling technique. MATERIALS AND METHOD Ten patients (median age 46.6 years, range 26.9 to 71.6 years) were included in the study. The indications for performing a crown lengthening procedure were esthetically short clinical crowns (n = 5), asymmetry of the gingival margin level (n = 2), and both esthetically short clinical crowns and asymmetry of the gingival margin level (n = 3). All the patients presented a thick gingival phenotype, and the mean number of operated teeth per patient was 3.7 (range 2 to 8 teeth). Three patients underwent an additional gingivectomy 6 weeks after the crown lengthening procedure. RESULTS The esthetic and functional outcome of the treatments fulfilled the patients' and dentist's expectations. CONCLUSION A minimally invasive two-stage crown lengthening procedure applying a tunneling technique has the potential to achieve predictable esthetic outcomes without an open-flap approach and an additional gingivectomy. However, prospective clinical studies are needed to validate this technique
    • 

    corecore