321 research outputs found

    Deleterious Effects of Cold Air Inhalation on Coronary Physiological Indices in Patients With Obstructive Coronary Artery Disease

    Get PDF
    Background Cold air inhalation during exercise increases cardiac mortality, but the pathophysiology is unclear. During cold and exercise, dual‐sensor intracoronary wires measured coronary microvascular resistance (MVR) and blood flow velocity (CBF), and cardiac magnetic resonance measured subendocardial perfusion. Methods and Results Forty‐two patients (62±9 years) undergoing cardiac catheterization, 32 with obstructive coronary stenoses and 10 without, performed either (1) 5 minutes of cold air inhalation (5°F) or (2) two 5‐minute supine‐cycling periods: 1 at room temperature and 1 during cold air inhalation (5°F) (randomized order). We compared rest and peak stress MVR, CBF, and subendocardial perfusion measurements. In patients with unobstructed coronary arteries (n=10), cold air inhalation at rest decreased MVR by 6% (P=0.41), increasing CBF by 20% (P<0.01). However, in patients with obstructive stenoses (n=10), cold air inhalation at rest increased MVR by 17% (P<0.01), reducing CBF by 3% (P=0.85). Consequently, in patients with obstructive stenoses undergoing the cardiac magnetic resonance protocol (n=10), cold air inhalation reduced subendocardial perfusion (P<0.05). Only patients with obstructive stenoses performed this protocol (n=12). Cycling at room temperature decreased MVR by 29% (P<0.001) and increased CBF by 61% (P<0.001). However, cold air inhalation during cycling blunted these adaptations in MVR (P=0.12) and CBF (P<0.05), an effect attributable to defective early diastolic CBF acceleration (P<0.05) and associated with greater ST‐segment depression (P<0.05). Conclusions In patients with obstructive coronary stenoses, cold air inhalation causes deleterious changes in MVR and CBF. These diminish or abolish the normal adaptations during exertion that ordinarily match myocardial blood supply to demand

    Constitutive glycogen synthase kinase-3α/ÎČ activity protects against chronic ÎČ-adrenergic remodelling of the heart

    Get PDF
    Aims Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3α and 9 of GSK-3ÎČ respectively, required for inactivation by upstream kinases. Methods and results Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion Expression of inactivation-resistant GSK-3α/ÎČ does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3α/ÎČ, may enable a sustained cardiac response to chronic ÎČ-agonist stimulation while preventing pathological remodelling

    Physiology of Angina and Its Alleviation With Nitroglycerin: Insights From Invasive Catheter Laboratory Measurements During Exercise

    Get PDF
    BACKGROUND: The mechanisms governing exercise-induced angina and its alleviation by the most commonly used antianginal drug, nitroglycerin, are incompletely understood. The purpose of this study was to develop a method by which the effects of antianginal drugs could be evaluated invasively during physiological exercise to gain further understanding of the clinical impact of angina and nitroglycerin. METHODS: Forty patients (mean age, 65.2±7.6 years) with exertional angina and coronary artery disease underwent cardiac catheterization via radial access and performed incremental exercise using a supine cycle ergometer. As they developed limiting angina, sublingual nitroglycerin was administered to half the patients, and all patients continued to exercise for 2 minutes at the same workload. Throughout exercise, distal coronary pressure and flow velocity and central aortic pressure were recorded with sensor wires. RESULTS: Patients continued to exercise after nitroglycerin administration with less ST-segment depression (P=0.003) and therefore myocardial ischemia. Significant reductions in afterload (aortic pressure, P=0.030) and myocardial oxygen demand were seen (tension-time index, P=0.024; rate-pressure product, P=0.046), as well as an increase in myocardial oxygen supply (Buckberg index, P=0.017). Exercise reduced peripheral arterial wave reflection (P<0.05), which was not further augmented by the administration of nitroglycerin (P=0.648). The observed increases in coronary pressure gradient, stenosis resistance, and flow velocity did not reach statistical significance; however, the diastolic velocity–pressure gradient relation was consistent with a significant increase in relative stenosis severity (k coefficient, P<0.0001), in keeping with exerciseinduced vasoconstriction of stenosed epicardial segments and dilatation of normal segments, with trends toward reversal with nitroglycerin. CONCLUSIONS: The catheterization laboratory protocol provides a model to study myocardial ischemia and the actions of novel and established antianginal drugs. Administration of nitroglycerin causes changes in the systemic and coronary circulation that combine to reduce myocardial oxygen demand and to increase supply, thereby attenuating exerciseinduced ischemia. Designing antianginal therapies that exploit these mechanisms may provide new therapeutic strategies

    Role of Caveolae in Cardiac Protection

    Get PDF
    Myocardial ischemia/reperfusion injury is a major cause of morbidity and mortality. The molecular signaling pathways involved in cardiac protection from myocardial ischemia/reperfusion injury are complex. An emerging idea in signal transduction suggests the existence of spatially organized complexes of signaling molecules in lipid-rich microdomains of the plasma membrane known as caveolae. Caveolins—proteins abundant in caveolae—provide a scaffold to organize, traffic, and regulate signaling molecules. Numerous signaling molecules involved in cardiac protection are known to exist within caveolae or interact directly with caveolins. Over the last 4 years, our laboratories have explored the hypothesis that caveolae are vitally important to cardiac protection from myocardial ischemia/reperfusion injury. We have provided evidence that (1) caveolae and the caveolin isoforms 1 and 3 are essential for cardiac protection from myocardial ischemia/reperfusion injury, (2) stimuli that produce preconditioning of cardiac myocytes, including brief periods of ischemia/reperfusion and exposure to volatile anesthetics, alter the number of membrane caveolae, and (3) cardiac myocyte-specific overexpression of caveolin-3 can produce innate cardiac protection from myocardial ischemia/reperfusion injury. The work demonstrates that caveolae and caveolins are critical elements of signaling pathways involved in cardiac protection and suggests that caveolins are unique targets for therapy in patients at risk of myocardial ischemia

    Expression of the 60 kDa and 71 kDa heat shock proteins and presence of antibodies against the 71 kDa heat shock protein in pediatric patients with immune thrombocytopenic purpura

    Get PDF
    BACKGROUND: Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by platelet destruction resulting from autoantibodies against platelet proteins, particularly platelet glycoprotein IIb/IIIa. Heat shock proteins (Hsp) have been shown to be major antigenic determinants in some autoimmune diseases. Antibodies to Hsps have also been reported to be associated with a number of pathological states. METHODS: Using western blot, we measured the levels of the 60 kDa heat shock protein (Hsp60) and of the inducible 71 kDa member of the Hsp70 family (Hsp71) in lymphocytes and the presence of antibodies against these hsps in plasma of 29 pediatric patients with ITP before the treatment and in 6 other patients before and after treatment. RESULTS: Interestingly only one out of 29 patients showed detectable Hsp60 in lymphocytes while this heat shock protein was detected in the 30 control children. Hsp71 levels were slightly lower in lymphocytes of patients with ITP than in controls (1567.8 ± 753.2 via 1763.2 ± 641.8 integrated optical density (IOD) units). There was a small increase of Hsp71 after recovery from ITP. The titers of plasma antibodies against Hsp60 and Hsp71 were also examined. Antibodies against Hsp71 were more common in ITP patients (15/29) than in control children (5/30). The titer of anti-Hsp71 was also higher in children patients with ITP. The prevalence of ITP children with antibodies against Hsp71 (51.7%) was as high as those with antibodies against platelet membrane glycoproteins (58.3%). CONCLUSIONS: In summary, pediatric patients with ITP showed no detectable expression of Hsp60 in lymphocytes and a high prevalence of antibody against Hsp71 in plasma. These changes add to our understanding of the pathogenesis of ITP and may be important for the diagnosis, prognosis and treatment of ITP

    From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”

    Get PDF
    © 2016, The Author(s).In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients’ cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia–reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients’ outcome

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    © 2016, The Author(s).To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research

    Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: between bench and bedside

    Get PDF
    © 2015, The Author(s). Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last “New Frontiers in Cardiovascular Research meeting”. Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia–reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection

    Effect of remote ischemic conditioning on atrial fibrillation and outcome after coronary artery bypass grafting (RICO-trial)

    Get PDF
    Background: Pre- and postconditioning describe mechanisms whereby short ischemic periods protect an organ against a longer period of ischemia. Interestingly, short ischemic periods of a limb, in itself harmless, may increase the ischemia tolerance of remote organs, e.g. the heart (remote conditioning, RC). Although several studies have shown reduced biomarker release by RC, a reduction of complications and improvement of patient outcome still has to be demonstrated. Atrial fibrillation (AF) is one of the most common complications after coronary artery bypass graft surgery (CABG), affecting 27-46% of patients. It is associated with increased mortality, adverse cardiovascular events, and prolonged in-hospital stay. We hypothesize that remote ischemic pre- and/or post-conditioning reduce the incidence of AF following CABG, and improve patient outcome.Methods/design: This study is a randomized, controlled, patient and investigator blinded multicenter trial. Elective CABG patients are randomized to one of the following four groups: 1) control, 2) remote ischemic preconditioning, 3) remote ischemic postconditioning, or 4) remote ischemic pre- and postconditioning. Remote conditio

    miRNAs at the heart of the matter

    Get PDF
    Cardiovascular disease is among the main causes of morbidity and mortality in developed countries. The pathological process of the heart is associated with altered expression profile of genes that are important for cardiac function. MicroRNAs (miRNAs) have emerged as one of the central players of gene expression regulation. The implications of miRNAs in the pathological process of cardiovascular system have recently been recognized, representing the most rapidly evolving research field. Here, we summarize and analyze the currently available data from our own laboratory and other groups, providing a comprehensive overview of miRNA function in the heart, including a brief introduction of miRNA biology, expression profile of miRNAs in cardiac tissue, role of miRNAs in cardiac hypertrophy and heart failure, the arrhythmogenic potential of miRNAs, the involvement of miRNAs in vascular angiogenesis, and regulation of cardiomyocyte apoptosis by miRNAs. The target genes and signaling pathways linking the miRNAs to cardiovascular disease are highlighted. The applications of miRNA interference technologies for manipulating miRNA expression, stability, and function as new strategies for molecular therapy of human disease are evaluated. Finally, some specific issues related to future directions of the research on miRNAs relevant to cardiovascular disease are pinpointed and speculated
    • 

    corecore