12 research outputs found

    Minimum energy path for the nucleation of misfit dislocations in Ge/Si(001) heteroepitaxy

    Full text link
    A possible mechanism for the formation of a 90{\deg} misfit dislocation at the Ge/Si(001) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90{\deg} misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60{\deg} dislocation nucleates. The intermediate minimum corresponds to an extended 60{\deg} dislocation. The subsequent energy maximum occurs as a second 60{\deg} dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60{\deg} dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60{\deg} dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90{\deg} dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(100) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids

    Determination of the structure and properties of an edge dislocation in rutile TiO2

    Get PDF
    A global optimization procedure is used to predict the structure and electronic properties of the b=c[001] edge dislocation in rutile TiO2. Over 1,000 different atomic configurations have been generated using both semi-empirical and density functional theory estimates of the energy of the system to identify the most stable structure. Both stoichiometric and oxygen deficient dislocation core structures are predicted to be stable depending on the oxygen chemical potential. The latter is associated with Ti3+ species in the dislocation core. The dislocation is predicted to act as a trap for electrons but not for holes suggesting they are not strong recombination centers. The predicted structures and properties are found to be consistent with experimental results obtained using scanning transmission electron microscopy and electron energy loss spectroscopy on samples produced using the bicrystal approach

    Du nanofil bimétallique isolé à la distribution de nanofils codéposés : une vision d'ensemble(s)

    No full text
    The chemical configuration and the specific shape of 1D bimetallic nano-objects endow them with physical properties (such as magnetic ones) that strongly differ from their bulk counterparts. To get a deep insight of the parameters that govern the equilibrium configuration, we consider a rigid lattice-gas Ising model that accounts for segregation effects within bimetallic nanowires that decorate a step edge.In a first section, we detail the equilibrium of a nanowire as a function of both its size and composition in order to specify the role of finite-size effects onto the equilibrium thermodynamics of 1D bimetallic objects. Contrary to infinite systems, this equilibrium depends on the statistical ensemble to be considered. The segregation profile is indeed stiffer in the canonical ensemble where the nanowire concentration is imposed, than in the semi-grand-canonical ensemble (s-GC) where the nanowire is in equibrium with a reservoir that sets the difference of chemical potentials between the species. Moreover, the composition constraint in the canonical ensemble yields chemical correlations between occupation sites that favor heteroatomic pairs. We show that the deviation observed between the isotherms related to the two ensembles increases with the curvature of the canonical isotherm and with the amplitude of the fluctuations of the nominal concentration within the s-GC ensemble. As these fluctuations decrease with the nanowire size, the deviation between ensembles vanishes at the thermodynamical limit. The finite-size effects also imply at low temperature for small nanowires, that a pure mode of the segregating species coexists with a low-concentration mode that mainly corresponds to core-shell and Janus configurations. We develop a framework to characterize the resulting two-mode density of compositions.While the abovementioned results deal with a fixed-size nanowire, we study in the second section the equilibrium of the set of nanowires that forms a submonolayer 1D-codeposit. We show that the size distribution of these nanowires globally varies as a power law, whatever the codeposit composition, so that segregation has a slight influence onto the observed microstructure. However, due to the surface/volume ratio and chemical correlations within these objects, the composition of the nanowires of the codeposit varies strongly with their size, the smaller the richer in the segregating species. Finally we extend the two-mode diagram of the single nanowire to the set of nanowires forming the codeposit and show that this two-mode distribution is hardly visible as it concerns only short nanowires which are very rare, mainly due to atomic cohesion that is reinforced at low temperature.Les nano-objets unidimensionnels alliés présentent des propriétés physiques spécifiques qui résultent à la fois de leur morphologie, de leur taille et de la répartition chimique des atomes. Nous exploitons un modèle d’Ising sur réseau qui rend compte en particulier des effets de ségrégation au sein de nanofils bimétalliques pour obtenir une compréhension fine des effets gouvernant cette répartition à l’équilibre.Dans une première section, nous détaillons l’équilibre d’un nanofil en fonction de sa taille et de sa composition, de manière à mettre en évidence le rôle des effets de taille finie sur la thermodynamique d’équilibre d’objets bimétalliques 1D. Contrairement aux systèmes infinis, l’équilibre dépend de l’ensemble statistique considéré. Ainsi la ségrégation est plus marquée dans l’ensemble canonique, où la concentration du nanofil est imposée, que dans l’ensemble pseudo-Grand Canonique (p-GC) où le nanofil est en équilibre avec un réservoir qui fixe la différence de potentiel chimique entre les espèces. De même, la contrainte de composition dans l’ensemble canonique induit des corrélations chimiques d’occupation des sites qui favorisent davantage les paires hétéroatomiques. Nous montrons que l’écart observé entre les isothermes des deux ensembles croît avec la courbure de l’isotherme canonique et avec l’amplitude des fluctuations de la concentration nominale dans l’ensemble p-GC. Ces fluctuations diminuant avec la taille du nanofil considéré, l’écart entre les ensembles s’annule à la limite thermodynamique. Les effets de taille finie se traduisent par ailleurs par l’apparition, à basse température et pour de petits nanofils, d’une coexistence d’un mode pur en l’espèce ségrégeante et d’un mode de faible concentration nominale constitué principalement de configurations de type cœur-coquille et Janus. Nous développons alors un formalisme permettant de caractériser cette bimodalité.Alors que les résultats évoqués précédemment concernent un nanofil considéré seul, nous étudions dans la deuxième section l’équilibre de l’ensemble des nanofils formant un co-dépôt unidimensionnel inférieur à la mono-couche. Nous montrons que la distribution en taille de ces nanofils varie globalement selon une loi de puissance, quelle que soit la composition du codépôt, de sorte que la ségrégation n’a que peu d’influence sur la microstructure observée. Par contre, en raison du rapport surface/volume et des corrélations chimiques dans ces objets, la composition des nanofils du co-dépôt varie très fortement selon leur taille, les petits nanofils étant plus riches en l’espèce ségrégeante que les plus grands. Enfin, nous étendons le diagramme de bimodalité d’un nanofil seul à l’ensemble des nanofils du co-dépôt et montrons que cette bimodalité est difficilement observable car elle ne concerne que des amas de petite taille qui sont très minoritaires du fait de la cohésion atomique

    Du nanofil bimétallique isolé à la distribution de nanofils codéposés : une vision d'ensemble(s)

    No full text
    The chemical configuration and the specific shape of 1D bimetallic nano-objects endow them with physical properties (such as magnetic ones) that strongly differ from their bulk counterparts. To get a deep insight of the parameters that govern the equilibrium configuration, we consider a rigid lattice-gas Ising model that accounts for segregation effects within bimetallic nanowires that decorate a step edge.In a first section, we detail the equilibrium of a nanowire as a function of both its size and composition in order to specify the role of finite-size effects onto the equilibrium thermodynamics of 1D bimetallic objects. Contrary to infinite systems, this equilibrium depends on the statistical ensemble to be considered. The segregation profile is indeed stiffer in the canonical ensemble where the nanowire concentration is imposed, than in the semi-grand-canonical ensemble (s-GC) where the nanowire is in equibrium with a reservoir that sets the difference of chemical potentials between the species. Moreover, the composition constraint in the canonical ensemble yields chemical correlations between occupation sites that favor heteroatomic pairs. We show that the deviation observed between the isotherms related to the two ensembles increases with the curvature of the canonical isotherm and with the amplitude of the fluctuations of the nominal concentration within the s-GC ensemble. As these fluctuations decrease with the nanowire size, the deviation between ensembles vanishes at the thermodynamical limit. The finite-size effects also imply at low temperature for small nanowires, that a pure mode of the segregating species coexists with a low-concentration mode that mainly corresponds to core-shell and Janus configurations. We develop a framework to characterize the resulting two-mode density of compositions.While the abovementioned results deal with a fixed-size nanowire, we study in the second section the equilibrium of the set of nanowires that forms a submonolayer 1D-codeposit. We show that the size distribution of these nanowires globally varies as a power law, whatever the codeposit composition, so that segregation has a slight influence onto the observed microstructure. However, due to the surface/volume ratio and chemical correlations within these objects, the composition of the nanowires of the codeposit varies strongly with their size, the smaller the richer in the segregating species. Finally we extend the two-mode diagram of the single nanowire to the set of nanowires forming the codeposit and show that this two-mode distribution is hardly visible as it concerns only short nanowires which are very rare, mainly due to atomic cohesion that is reinforced at low temperature.Les nano-objets unidimensionnels alliés présentent des propriétés physiques spécifiques qui résultent à la fois de leur morphologie, de leur taille et de la répartition chimique des atomes. Nous exploitons un modèle d’Ising sur réseau qui rend compte en particulier des effets de ségrégation au sein de nanofils bimétalliques pour obtenir une compréhension fine des effets gouvernant cette répartition à l’équilibre.Dans une première section, nous détaillons l’équilibre d’un nanofil en fonction de sa taille et de sa composition, de manière à mettre en évidence le rôle des effets de taille finie sur la thermodynamique d’équilibre d’objets bimétalliques 1D. Contrairement aux systèmes infinis, l’équilibre dépend de l’ensemble statistique considéré. Ainsi la ségrégation est plus marquée dans l’ensemble canonique, où la concentration du nanofil est imposée, que dans l’ensemble pseudo-Grand Canonique (p-GC) où le nanofil est en équilibre avec un réservoir qui fixe la différence de potentiel chimique entre les espèces. De même, la contrainte de composition dans l’ensemble canonique induit des corrélations chimiques d’occupation des sites qui favorisent davantage les paires hétéroatomiques. Nous montrons que l’écart observé entre les isothermes des deux ensembles croît avec la courbure de l’isotherme canonique et avec l’amplitude des fluctuations de la concentration nominale dans l’ensemble p-GC. Ces fluctuations diminuant avec la taille du nanofil considéré, l’écart entre les ensembles s’annule à la limite thermodynamique. Les effets de taille finie se traduisent par ailleurs par l’apparition, à basse température et pour de petits nanofils, d’une coexistence d’un mode pur en l’espèce ségrégeante et d’un mode de faible concentration nominale constitué principalement de configurations de type cœur-coquille et Janus. Nous développons alors un formalisme permettant de caractériser cette bimodalité.Alors que les résultats évoqués précédemment concernent un nanofil considéré seul, nous étudions dans la deuxième section l’équilibre de l’ensemble des nanofils formant un co-dépôt unidimensionnel inférieur à la mono-couche. Nous montrons que la distribution en taille de ces nanofils varie globalement selon une loi de puissance, quelle que soit la composition du codépôt, de sorte que la ségrégation n’a que peu d’influence sur la microstructure observée. Par contre, en raison du rapport surface/volume et des corrélations chimiques dans ces objets, la composition des nanofils du co-dépôt varie très fortement selon leur taille, les petits nanofils étant plus riches en l’espèce ségrégeante que les plus grands. Enfin, nous étendons le diagramme de bimodalité d’un nanofil seul à l’ensemble des nanofils du co-dépôt et montrons que cette bimodalité est difficilement observable car elle ne concerne que des amas de petite taille qui sont très minoritaires du fait de la cohésion atomique

    Segregation in co-deposited bimetallic nanowires : finite-size effects and equilibrium distribution

    No full text
    Les nano-objets unidimensionnels alliés présentent des propriétés physiques spécifiques qui résultent à la fois de leur morphologie, de leur taille et de la répartition chimique des atomes. Nous exploitons un modèle d’Ising sur réseau qui rend compte en particulier des effets de ségrégation au sein de nanofils bimétalliques pour obtenir une compréhension fine des effets gouvernant cette répartition à l’équilibre.Dans une première section, nous détaillons l’équilibre d’un nanofil en fonction de sa taille et de sa composition, de manière à mettre en évidence le rôle des effets de taille finie sur la thermodynamique d’équilibre d’objets bimétalliques 1D. Contrairement aux systèmes infinis, l’équilibre dépend de l’ensemble statistique considéré. Ainsi la ségrégation est plus marquée dans l’ensemble canonique, où la concentration du nanofil est imposée, que dans l’ensemble pseudo-Grand Canonique (p-GC) où le nanofil est en équilibre avec un réservoir qui fixe la différence de potentiel chimique entre les espèces. De même, la contrainte de composition dans l’ensemble canonique induit des corrélations chimiques d’occupation des sites qui favorisent davantage les paires hétéroatomiques. Nous montrons que l’écart observé entre les isothermes des deux ensembles croît avec la courbure de l’isotherme canonique et avec l’amplitude des fluctuations de la concentration nominale dans l’ensemble p-GC. Ces fluctuations diminuant avec la taille du nanofil considéré, l’écart entre les ensembles s’annule à la limite thermodynamique. Les effets de taille finie se traduisent par ailleurs par l’apparition, à basse température et pour de petits nanofils, d’une coexistence d’un mode pur en l’espèce ségrégeante et d’un mode de faible concentration nominale constitué principalement de configurations de type cœur-coquille et Janus. Nous développons alors un formalisme permettant de caractériser cette bimodalité.Alors que les résultats évoqués précédemment concernent un nanofil considéré seul, nous étudions dans la deuxième section l’équilibre de l’ensemble des nanofils formant un co-dépôt unidimensionnel inférieur à la mono-couche. Nous montrons que la distribution en taille de ces nanofils varie globalement selon une loi de puissance, quelle que soit la composition du codépôt, de sorte que la ségrégation n’a que peu d’influence sur la microstructure observée. Par contre, en raison du rapport surface/volume et des corrélations chimiques dans ces objets, la composition des nanofils du co-dépôt varie très fortement selon leur taille, les petits nanofils étant plus riches en l’espèce ségrégeante que les plus grands. Enfin, nous étendons le diagramme de bimodalité d’un nanofil seul à l’ensemble des nanofils du co-dépôt et montrons que cette bimodalité est difficilement observable car elle ne concerne que des amas de petite taille qui sont très minoritaires du fait de la cohésion atomique.The chemical configuration and the specific shape of 1D bimetallic nano-objects endow them with physical properties (such as magnetic ones) that strongly differ from their bulk counterparts. To get a deep insight of the parameters that govern the equilibrium configuration, we consider a rigid lattice-gas Ising model that accounts for segregation effects within bimetallic nanowires that decorate a step edge.In a first section, we detail the equilibrium of a nanowire as a function of both its size and composition in order to specify the role of finite-size effects onto the equilibrium thermodynamics of 1D bimetallic objects. Contrary to infinite systems, this equilibrium depends on the statistical ensemble to be considered. The segregation profile is indeed stiffer in the canonical ensemble where the nanowire concentration is imposed, than in the semi-grand-canonical ensemble (s-GC) where the nanowire is in equibrium with a reservoir that sets the difference of chemical potentials between the species. Moreover, the composition constraint in the canonical ensemble yields chemical correlations between occupation sites that favor heteroatomic pairs. We show that the deviation observed between the isotherms related to the two ensembles increases with the curvature of the canonical isotherm and with the amplitude of the fluctuations of the nominal concentration within the s-GC ensemble. As these fluctuations decrease with the nanowire size, the deviation between ensembles vanishes at the thermodynamical limit. The finite-size effects also imply at low temperature for small nanowires, that a pure mode of the segregating species coexists with a low-concentration mode that mainly corresponds to core-shell and Janus configurations. We develop a framework to characterize the resulting two-mode density of compositions.While the abovementioned results deal with a fixed-size nanowire, we study in the second section the equilibrium of the set of nanowires that forms a submonolayer 1D-codeposit. We show that the size distribution of these nanowires globally varies as a power law, whatever the codeposit composition, so that segregation has a slight influence onto the observed microstructure. However, due to the surface/volume ratio and chemical correlations within these objects, the composition of the nanowires of the codeposit varies strongly with their size, the smaller the richer in the segregating species. Finally we extend the two-mode diagram of the single nanowire to the set of nanowires forming the codeposit and show that this two-mode distribution is hardly visible as it concerns only short nanowires which are very rare, mainly due to atomic cohesion that is reinforced at low temperature

    Deformation of ultra-hard ceramic nanocrystals using atomistic simulations

    No full text
    International audienceNucléation de dislocation dans des nanocubes de MgO, approche par MD et NE

    Site dependence of surface dislocation nucleation in ceramic nanoparticles

    No full text
    International audienceThe extremely elevated strength of nanoceramics under compression arises from the necessity to nucleate highly energetic dislocations from the surface, in samples that are too small to contain pre-existing defects. Here, we investigate the site dependence of surface dislocation nucleation in MgO nanocubes using a combination of molecular dynamics simulations, nudgedelastic-band method calculations and rate theory predictions. Using an original simulation setup, we obtain a complete mapping of the potential dislocation nucleation sites on the surface of the nanoparticle and find that, already at intermediate temperature, not only nanoparticle corners are favorable nucleation sites, but also the edges and even regions on the side surfaces, while other locations are intrinsically unfavorable. Results are discussed in the context of recent in situ TEM experiments, sheding new lights on the deformation mechanisms happening during ceramic nanopowder compaction and sintering processes

    Equilibrium Distribution of Alloyed Nanowires

    No full text

    Segregation in bimetallic nanowires: Size and thermodynamic ensemble effects

    No full text
    International audienc
    corecore