100 research outputs found
A Biallelic Frameshift Indel in PPP1R35 as a Cause of Primary Microcephaly
Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis
The Afrotropical breeding grounds of the Palearctic-African migratory painted lady butterflies (Vanessa cardui)
Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.This work was funded by the National Geographic Society (grant WW1-300R-18); by the British Ecological Society (grant LRB16/1015); by the Research and Conservation Projects of the Fundació Barcelona Zoo; by the grant PID2020-117739GA-I00/MCIN/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation and the Spanish State Research Agency to G.T.; by the grant LINKA20399 from the Spanish National Research Council iLink program to G.T., C.P.B., N.E.P., and R.V.; by fellowship FPU19/01593 of the program Formación de Profesorado Universitario (FPU) to A.G.-B.; by the Turkana Basin Institute, National Geographic Society, and Whitley Fund for Nature to D.J.M.; and by grant 2018-00738 of the New Frontiers in Research Fund (Government of Canada) to G.T. and C.P.B.Significance
Abstract
Results
Field Surveys, Larval Hostplants, and Field-Based Model Validation
Monitoring Results and Population Dynamics across Regions
A Refined Model for the Afrotropical Region
Discussion
The Afrotropical Breeding Grounds of V. cardui: Multiple Generations Shift South Toward the Tropics
Diversity and Phenology of Larval Hostplants in the Afrotropics
The Ecological Relevance of Delimiting Spatiotemporal Distributions in Migratory Insects
Conclusion
Methods
December-January Field Surveys and Year-Round Monitoring
Spatiotemporal Ecological Niche Modeling
Data, Materials, and Software Availability
Acknowledgments
Supporting Information
Reference
Biallelic GRM7 variants cause epilepsy, microcephaly, and cerebral atrophy
Objective: Defects in ion channels and neurotransmitter receptors are implicated in developmental and epileptic encephalopathy (DEE). Metabotropic glutamate receptor 7 (mGluR7), encoded by GRM7, is a presynaptic G-protein-coupled glutamate receptor critical for synaptic transmission. We previously proposed GRM7 as a candidate disease gene in two families with neurodevelopmental disorders (NDDs). One additional family has been published since. Here, we describe three additional families with GRM7 biallelic variants and deeply characterize the associated clinical neurological and electrophysiological phenotype and molecular data in 11 affected individuals from six unrelated families. Methods: Exome sequencing and family-based rare variant analyses on a cohort of 220 consanguineous families with NDDs revealed three families with GRM7 biallelic variants; three additional families were identified through literature search and collaboration with a clinical molecular laboratory. Results: We compared the observed clinical features and variants of 11 affected individuals from the six unrelated families. Identified novel deleterious variants included two homozygous missense variants (c.2671G>A:p.Glu891Lys and c.1973G>A:p.Arg685Gln) and one homozygous stop-gain variant (c.1975C>T:p.Arg659Ter). Developmental delay, neonatal- or infantile-onset epilepsy, and microcephaly were universal. Three individuals had hypothalamic–pituitary–axis dysfunction without pituitary structural abnormality. Neuroimaging showed cerebral atrophy and hypomyelination in a majority of cases. Two siblings demonstrated progressive loss of myelination by 2 years in both and an acquired microcephaly pattern in one. Five individuals died in early or late childhood. Conclusion: Detailed clinical characterization of 11 individuals from six unrelated families demonstrates that rare biallelic GRM7 pathogenic variants can cause DEEs, microcephaly, hypomyelination, and cerebral atrophy. © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association
TCEAL1 Loss-of-Function Results in an X-Linked Dominant Neurodevelopmental Syndrome and Drives the Neurological Disease Trait in Xq222 Deletions
An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion
Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy (DEE) and severe neurodevelopmental disorders (NDDs). Exome sequencing and family-based rare variant analyses on a cohort with NDD identified two siblings with DEE and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar DEE phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and cerebrospinal fluid of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for DEE and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis
Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process
This paper assesses the use of alkali activation technology in the valorization of a spent fluid catalytic cracking (FCC) catalyst, which is a residue derived from the oil-cracking process, to produce geopolymer binders. In particular, the effects of activation conditions on the structural characteristics of the spent catalyst-
based geopolymers are determined. The zeolitic phases present in the spent catalyst are the main phases participating in the geopolymerization reaction, which is driven by the conversion of the zeolitic material to a highly Al-substituted aluminosilicate binder gel. Higher alkali content and SiO2/Na2O ratio lead to a denser structure with a higher degree of geopolymer gel formation and increased degree of crosslinking, as identified through 29Si MAS NMR. These results highlight the feasibility of using spent FCC catalyst as a precursor for geopolymer production.This study was sponsored by research scholarship BES-2008-002440 and EEBB-2011-43847 from the Ministerio de Ciencia y Tecnologia of Spain, the European regional development fund (FEDER), and the Universitat Politecnica de Valencia (Spain). The participation of SAB and JLP was funded by the Australian Research Council through the Discovery Projects program, and also including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC. The authors wish to acknowledge the Advanced Microscopy Facility at The University of Melbourne for assistance with the electron microscopy experiments conducted in this study.Rodriguez Martinez, ED.; Bernal, SA.; Provis, JL.; Gehman, JD.; Monzó Balbuena, JM.; Paya Bernabeu, JJ.; Borrachero Rosado, MV. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109:493-502. https://doi.org/10.1016/j.fuel.2013.02.053S49350210
Expanding the allelic spectrum of ELOVL4‐related autosomal recessive neuro‐ichthyosis
Background Very long-chain fatty acids (VLCFAs) composed of more than 20 carbon atoms are essential in the biosynthesis of cell membranes in the brain, skin, and retina. VLCFAs are elongated beyond 28 carbon atoms by ELOVL4 enzyme. Variants in ELOVL4 are associated with three Mendelian disorders: autosomal dominant (AD) Stargardt-like macular dystrophy type 3, AD spinocerebellar ataxia, and autosomal recessive disorder congenital ichthyosis, spastic quadriplegia and impaired intellectual development (ISQMR). Only seven subjects from five unrelated families with ISQMR have been described, all of which have biallelic single-nucleotide variants. Methods We performed clinical exome sequencing on probands from four unrelated families with neuro-ichthyosis. Results We identified three novel homozygous ELOVL4 variants. Two of the families originated from the same Saudi tribe and had the exact homozygous exonic deletion in ELOVL4, while the third and fourth probands had two different novel homozygous missense variants. Seven out of the eight affected subjects had profound developmental delay, epilepsy, axial hypotonia, peripheral hypertonia, and ichthyosis. Delayed myelination and corpus callosum hypoplasia were seen in two of five subjects with brain magnetic rosonance imaging and cerebral atrophy in three. Conclusion Our study expands the allelic spectrum of ELOVL4-related ISQMR. The detection of the same exonic deletion in two unrelated Saudi family from same tribe suggests a tribal founder mutation
Brain monoamine vesicular transport disease caused by homozygous SLC18A2 variants: A study in 42 affected individuals
Purpose: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype–phenotype correlations in individuals with biallelic SLC18A2 variants. Methods: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype–phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. Results: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. Conclusion: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders
The Arab world's contribution to solid waste literature: a bibliometric analysis
BACKGROUND: Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. METHODS: We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. RESULTS: A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982–2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. CONCLUSIONS: Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects
- …