69 research outputs found

    Evaluation of global fire simulations in CMIP6 Earth system models

    Get PDF
    Fire is the primary form of terrestrial ecosystem disturbance on a global scale and an important Earth system process. Most Earth system models (ESMs) have incorporated fire modeling, with 19 out of them submitting model outputs of fire-related variables to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study provides the first comprehensive evaluation of CMIP6 historical fire simulations by comparing them with multiple satellite-based products and charcoal-based historical reconstructions. Our results show that most CMIP6 models simulate the present-day global burned area and fire carbon emissions within the range of satellite-based products. They also capture the major features of observed spatial patterns and seasonal cycles, the relationship of fires with precipitation and population density, and the influence of El Niño-Southern Oscillation (ENSO) on the interannual variability of tropical fires. Regional fire carbon emissions simulated by the CMIP6 models from 1850 to 2010 generally align with the charcoal-based reconstructions, although there are regional mismatches, such as in southern South America and eastern temperate North America prior to the 1910s and in temperate North America, eastern boreal North America, Europe, and boreal Asia since the 1980s. The CMIP6 simulations have addressed three critical issues identified in the CMIP5: (1) the simulated global burned area less than half of the observations, (2) the failure to reproduce the high burned area fraction observed in Africa, and (3) the weak fire seasonal variability. Furthermore, the CMIP6 models exhibit improved accuracy in capturing the observed relationship between fires and both climatic and socioeconomic drivers, and better align with the historical long-term trends indicated by charcoal-based reconstructions in most regions worldwide. However, the CMIP6 models still fail to reproduce the decline in global burned area and fire carbon emissions observed over the past two decades, mainly attributed to an underestimation of anthropogenic fire suppression, and the spring peak in fires in the Northern Hemisphere mid-latitudes, mainly due to an underestimation of crop fires. In addition, the model underestimates the fire sensitivity to wet-dry conditions, indicating the need to improve fuel wetness estimation. Based on these findings, we present specific guidance for fire scheme development and suggest the post-processing methodology for using CMIP6 multi-model outputs to generate reliable fire projection products

    Airbone microphysical measurements and radar reflectivity observations near a cold frontal rainband observes during the FRONTS-87 experiment

    No full text
    International audienceAirborne microphysical measurements and ground-based radar-reflectivity observations, collected at the near of a narrow cold frontal rainband during the FRONTS 87 experiment, are used to infer some characteristics of the precipitation: size-distribution, liquid or ice-water content, mass-weighted fallspeed, radar-reflectivity and relationships between pairs of these quantities. In the ice phase region, two different methods are proposed to calculate the radar reflectivity from the aircraft data. The influence of the choice of the ice particle type on the calculated quantities is discussed from the results of the first method. The second method is new: it is based upon the use of a roughness parameter estimated from the analysis of the two-dimensional particle images of ice precipitation. Although this method is tentative, it gives conclusive results for the two different flight levels studied here

    Interpol-IAGOS: a new method for assessing long-term chemistry–climate simulations in the UTLS based on IAGOS data, and its application to the MOCAGE CCMI REF-C1SD simulation

    No full text
    International audienceAbstract. A wide variety of observation data sets are used to assess long-term simulations provided by chemistry–climate models (CCMs) and chemistry-transport models (CTMs). However, the upper troposphere–lower stratosphere (UTLS) has hardly been assessed in these modelling exercises yet. Observations performed in the framework of IAGOS (In-service Aircraft for a Global Observing System) combine the advantages of in situ airborne measurements in the UTLS with an almost-global-scale sampling, a ∌20-year monitoring period and a high frequency. Even though a few model assessments have been made using the IAGOS database, none of them took advantage of the dense and high-resolution cruise data in their whole ensemble yet. The present study proposes a method to compare this large IAGOS data set to long-term simulations used for chemistry–climate studies. As a first application, the REF-C1SD reference simulation generated by the MOCAGE (MOdĂšle de Chimie AtmosphĂ©rique Ă  Grande Echelle) CTM in the framework of Chemistry-Climate Model Initiative (CCMI) phase I has been evaluated during the 1994–2013 period for ozone (O3) and the 2002–2013 period for carbon monoxide (CO). The concept of the new comparison software proposed here (so-called Interpol-IAGOS) is to project all IAGOS data onto the 3-D grid of the model with a monthly resolution, since generally the 3-D outputs provided by chemistry–climate models for multi-model comparisons on multi-decadal timescales are archived as monthly means. This provides a new IAGOS data set (IAGOS-DM) mapped onto the model's grid and time resolution. To get a model data set consistent with IAGOS-DM for the comparison, a subset of the model's outputs is created (MOCAGE-M) by applying a mask that retains only the model data at the available IAGOS-DM grid points. Climatologies are derived from the IAGOS-DM product, and good correlations are reported between with the MOCAGE-M spatial distributions. As an attempt to analyse MOCAGE-M behaviour in the upper troposphere (UT) and the lower stratosphere (LS) separately, UT and LS data in IAGOS-DM were sorted according to potential vorticity. From this, we derived O3 and CO seasonal cycles in eight regions well sampled by IAGOS flights in the northern midlatitudes. They are remarkably well reproduced by the model for lower-stratospheric O3 and also good for upper-tropospheric CO. Along this model evaluation, we also assess the differences caused by the use of a weighting function in the method when projecting the IAGOS data onto the model grid compared to the scores derived in a simplified way. We conclude that the data projection onto the model's grid allows us to filter out biases arising from either spatial or temporal resolution, and the use of a weighting function yields different results, here by enhancing the assessment scores. Beyond the MOCAGE REF-C1SD evaluation presented in this paper, the method could be used by CCMI models for individual assessments in the UTLS and for model intercomparisons with respect to the IAGOS data set

    The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes

    Get PDF
    We conduct analyses to assess how characteristics of observations of ozone and its precursors affect air quality forecasting and research. To carry out this investigation, we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-variational data assimilation system. Using this framework in conjunction with pseudo-observations, we perform an ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality prediction. We use an analytical model to conduct uncertainty analyses. Using this analytical tool, we address some key questions regarding how the characteristics of observations affect ozone precursor emission inversion and in turn ozone prediction. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. In our investigation we use three observed species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical model was set up to simulate a range of summertime polluted environments spanning NOx-(NO and NO2)-limited to volatile organic compound (VOC)-limited conditions. We find that as the photochemical regime changes, here is a variation in the relative importance of trace gas observations to be able to constrain emission estimates and to improve the subsequent ozone forecasts. For example, adding ozone observations to an NO2 and CO observing system is found to decrease ozone prediction error under NOx- and VOC-limited regimes, and complementing the NO2 and CO system with HCHO observations would improve ozone prediction in the transitional regime and under VOC-limited conditions. We found that scenarios observing ozone and HCHO with a relative observing noise of lower than 33 % were able to achieve ozone prediction errors of lower than 5 ppbv (parts per billion by volume). Further, only observing intervals of 3 h or shorter were able to consistently achieve ozone prediction errors of 5 ppbv or lower across all photochemical regimes. Making observations closer to the prediction period and either in the morning or afternoon rush hour periods made greater improvements for ozone prediction: 0.2–0.3 ppbv for the morning rush hour and from 0.3 to 0.8 ppbv for the afternoon compared to only 0–0.1 ppbv for other times of the day. Finally, we made two complementary analyses that show that our conclusions are insensitive to the assumed diurnal emission cycle and to the choice of which VOC species emission to estimate using our framework. These questions will address how different types of observing platform, e.g. geostationary satellites or ground monitoring networks, could support future air quality research and forecasting

    The impact of biomass burning on upper tropospheric carbon monoxide: a study using MOCAGE global model and IAGOS airborne data

    No full text
    International audienceIn this paper, the fate of biomass burning emissions of carbon monoxide is studied with the global chemistry-transport model MOCAGE (MOdĂ©lisation de Chimie AtmosphĂ©rique Ă  Grande Échelle) and IAGOS (In-Service Aircraft for a Global Observing System) airborne measurements for the year 2013. The objectives are firstly to improve their representation within the model and secondly to analyse their contribution to carbon monoxide concentrations in the upper troposphere. At first, a new implementation of biomass burning injection is developed for MOCAGE, using the latest products available in Global Fire Assimilation System (GFAS) biomass burning inventory on plume altitude and injection height. This method is validated against IAGOS observations of CO made in fire plumes, identified thanks to the SOFT-IO source attribution data. The use of these GFAS products leads to improved MOCAGE skill to simulate fire plumes originating from boreal forest wildfires. It is also shown that this new biomass burning injection method modifies the distribution of carbon monoxide in the free and upper troposphere, mostly at northern boreal latitudes. Then, MOCAGE performance is evaluated in general in the upper troposphere and lower stratosphere in comparison to the IA-GOS observations and is shown to be very good, with very low bias and good correlations between the model and the observations. Finally, we analyse the contribution of biomass burning to upper tropospheric carbon monoxide concentrations. This is done by comparing simulations where biomass are toggled on and off in different source regions of the world to assess their individual influence. The two regions contributing the most to upper tropospheric CO are found to be the boreal forests and equatorial Africa, in accordance with the quantities of CO they emit each year and the fact that they undergo fast vertical transport: deep convection in the tropics and pyroconvection at high latitudes. It is also found that biomass burning contributes more than 11 % on average to the CO concentrations in the upper troposphere and up to 50 % at high latitudes during the wildfire season

    Update of Infrared Atmospheric Sounding Interferometer (IASI) channel selection with correlated observation errors for numerical weather prediction (NWP)

    No full text
    International audienceThe Infrared Atmospheric Sounding Interferome-ter (IASI) is an essential instrument for numerical weather prediction (NWP). It measures radiances at the top of the atmosphere using 8461 channels. The huge amount of observations provided by IASI has led the community to develop techniques to reduce observations while conserving as much information as possible. Thus, a selection of the 300 most informative channels was made for NWP based on the concept of information theory. One of the main limitations of this method was to neglect the covariances between the observation errors of the different channels. However, many centres have shown a significant benefit for weather forecasting to use them. Currently, the observation-error covariances are only estimated on the current IASI channel selection, but no studies to make a new selection of IASI channels taking into account the observation-error covariances have yet been carried out. The objective of this paper was therefore to perform a new selection of IASI channels by taking into account the observation-error covariances. The results show that with an equivalent number of channels, accounting for the observation-error covariances, a new selection of IASI channels can reduce the analysis error on average in temperature by 3 %, humidity by 1.8 % and ozone by 0.9 % compared to the current selection. Finally, we go one step further by proposing a robust new selection of 400 IASI channels to further reduce the analysis error for NWP
    • 

    corecore