29 research outputs found

    Reversible Tuning of the Heavy Fermion Ground State in CeCoIn5_5

    Full text link
    Cadmium-doping the heavy-fermion superconductor CeCoIn5_5 at the percent level acts as an electronic tuning agent, sensitively shifting the balance between superconductivity and antiferromagnetism and opening new ambient-pressure phase space in the study of heavy-fermion ground states.Comment: 14 pages, 3 figure

    Shubnikov-de Haas measurements on LuRh2Si2

    Full text link
    We present Shubnikov-de Haas measurements on LuRh2Si2, the non-magnetic reference compound to the prototypical heavy-fermion system YbRh2Si2. We find an extensive set of orbits with clear angular dependences. Surprisingly, the agreement with non-correlated band structure calculations is limited. This may be related to an uncertainty in the calculations arising from a lack of knowledge about the exact Si atom position in the unit cell. The data on LuRh2Si2 provide an extensive basis for the interpretation of measurements on YbRh2Si2 indicative of discrepancies between the high-field Fermi surface of YbRh2Si2 and the "small" Fermi surface configuration.Comment: 5 page

    Magnetic and electronic quantum criticality in YbRh2Si2

    Get PDF
    The unconventional nature of the quantum criticality in YbRh 2Si 2 is highlighted on the basis of magnetoresistivity and susceptibility measurements. Results obtained under chemical pressure realized by isoelectronic substitution on the rhodium site are presented. These results illustrate the position of the T*-line associated with a breakdown of the Kondo effect near the antiferromagnetic instability in the low-temperature phase diagram. Whereas at zero temperature the Kondo breakdown and the antiferromagnetic quantum critical point coincide in the proximity of the stoichiometric compound, they are seen to be detached under chemical pressure: For positive chemical pressure the magnetically ordered phase extends beyond the T*(B)-line. For sufficiently high negative pressure the T*(B)-line is separated from the magnetically ordered phase. From our detailed analysis we infer that the coincidence is retained at small iridium concentrations, i.e., at small negative chemical pressure. We outline further measurements which may help to clarify the detailed behavior of the two instabilities. © 2010 Springer Science+Business Media, LLC

    Energy scales of Lu(1-x)Yb(x)Rh2Si2 by means of thermopower investigations

    Full text link
    We present the thermopower S(T) and the resistivity rho(T) of Lu(1-x)Yb(x)Rh2Si2 in the temperature range 3 K < T < 300 K. S(T) is found to change from two minima for dilute systems (x < 0.5) to a single large minimum in pure YbRh2Si2. A similar behavior has also been found for the magnetic contribution to the resistivity rho_mag(T). The appearance of the low-T extrema in S(T) and rho_mag(T) is attributed to the lowering of the Kondo scale with decreasing x. The evolution of the characteristic energy scales for both the Kondo effect and the crystal electric field splitting are deduced. An extrapolation allows to estimate the Kondo temperature of YbRh2Si2 to 29 K.Comment: 15 pages, 4 figures, accepted in Phys. Rev.

    Magnetic field dependence and bottlenecklike behavior of the ESR spectra in YbRh2Si2

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Electron spin resonance (ESR) experiments at different fields or frequencies (4.1 <=nu <= 34.4 GHz) in the Kondo lattice (T-K similar or equal to 25 K) YbRh2Si2 single-crystal compounds confirmed the observation of a single anisotropic Dysonian resonance with g(perpendicular to c)congruent to 3.55 and no hyperfine components for 4.2 less than or similar to T less than or similar to 20 K. However, our studies differently reveal that (i) the ESR spectra for H-perpendicular to c show strong-field-dependent spin-lattice relaxation, (ii) a weak-field and temperature-dependent effective g value, (iii) a dramatic suppression of the ESR intensity beyond 15% of Lu doping, and (iv) a strong sample and Lu-doping (<= 15%) dependence of the ESR data. These results suggest a different scenario where the ESR signal may be associated to a coupled Yb3+-conduction electron resonant collective mode with a strong bottleneck and dynamiclike behavior.793Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)NSF (USA)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore