PHYSICAL REVIEW B 79, 035122 (2009)

Magnetic field dependence and bottlenecklike behavior of the ESR spectra in YbRh₂Si₂

J. G. S. Duque, E. M. Bittar, C. Adriano, C. Giles, L. M. Holanda, R. Lora-Serrano, P. G. Pagliuso, C. Rettori, C. A. Pérez,² Rongwei Hu,³ C. Petrovic,³ S. Maquilon,⁴ Z. Fisk,⁵ D. L. Huber,⁶ and S. B. Oseroff⁷ ¹Instituto de Física "Gleb Wataghin," UNICAMP, CP 6165, 13083-970 Campinas, SP, Brazil ²Laboratório Nacional de Luz Síncrotron, CP 6192, Campinas-SP 13083-970, Brazil ³Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA ⁴Department of Physics, University of California–Davis, Davis, California 95617, USA ⁵Department of Physics, University of California–Irvine, Irvine, California 92697-4573, USA ⁶Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA ⁷Department of Physics, San Diego State University, San Diego, California 92182, USA (Received 29 September 2008; published 27 January 2009)

Electron spin resonance (ESR) experiments at different fields or frequencies $(4.1 \le \nu \le 34.4 \text{ GHz})$ in the Kondo lattice $(T_K \approx 25 \text{ K}) \text{ YbRh}_2\text{Si}_2 \text{ single-crystal compounds confirmed the observation of a single aniso$ tropic Dysonian resonance with $g_{\perp c} \cong 3.55$ and no hyperfine components for $4.2 \lesssim T \lesssim 20$ K. However, our studies differently reveal that (i) the ESR spectra for $H_{\perp c}$ show strong-field-dependent spin-lattice relaxation, (ii) a weak-field and temperature-dependent effective g value, (iii) a dramatic suppression of the ESR intensity beyond 15% of Lu doping, and (iv) a strong sample and Lu-doping (≤15%) dependence of the ESR data. These results suggest a different scenario where the ESR signal may be associated to a coupled Yb3+-conduction electron resonant collective mode with a strong bottleneck and dynamiclike behavior.

DOI: 10.1103/PhysRevB.79.035122 PACS number(s): 71.27.+a, 75.20.Hr, 76.30.-v

I. INTRODUCTION

The metallic antiferrromagnetic [(AF) T_N =70 mK] tetragonal (I4/mmm) heavy-fermion (HF) Kondo lattice (T_K =25 K) YbRh₂Si₂ is a peculiar system that has attracted great attention of the scientific community interested in strongly correlated electron systems. At high-T (T ≥200 K) its magnetic susceptibility follows an anisotropic Curie-Weiss law with a full Yb3+ magnetic moment ($\mu_{\rm eff}$ $\simeq 4.5 \mu_B$), but at low T ($T \lesssim T_K$) HF behavior is found. 1,3,34 The AF ordering² of YbRh₂Si₂ can be suppressed by a weak magnetic field of $H_{\perp c} \sim 650$ Oe and when this AF state is H tuned toward a quantum critical point (QCP), pronounced non-Fermi-liquid (NFL) behavior is found. 1,34 These properties made YbRh₂Si₂ a special system for studying quantum criticality and NFL behavior in connection to other systems near a QCP.4,5

Other unexpected and interesting aspect of YbRh₂Si₂ was revealed by electron spin resonance (ESR) studies.⁶ Narrow (100-200 Oe) single Dysonian resonance with no hyperfine components, T dependence of the linewidth, ΔH , and a g-value anisotropy consistent with Yb3+ in a metallic host of tetragonal symmetry was found for $T \lesssim 20$ K. However, despite its H-tunable ground state, no H-dependent ESR parameters were reported for $H \lesssim 10$ kOe.⁶ Moreover, a narrow Yb3+ ESR in a dense Kondo system as YbRh₂Si₂ below T_K was totally unexpected. Since its first observation⁶ various reports were published on the ESR of Yb3+ in stoichiometric YbRh₂Si₂, ⁷ YbIr₂Si₂, ⁸ and YbRh₂Si₂ doped with nonmagnetic impurities as Ge (Ref. 9) and La. 10 Recently, the ESR of Ce³⁺ in dense Kondo systems was also communicated. 11 Nevertheless, there is still no clear understanding of the microscopic mechanism that allows the observation of such a narrow Yb3+ ESR line characteristic of a local moment in a metallic host.

In this work, our main report is on the H-dependent ESR experiments in the NFL phase of YbRh₂Si₂ $(4.2 \le T)$ ≤ 10 K; $0 < H \leq 10$ kOe). Our results reveal an unconventional H dependence and bottlenecklike behavior of the Yb³⁺ resonance in this system that may help to shed light on the origin of such unexpected ESR signal.

II. EXPERIMENT

Single crystals of $Yb_{1-x}Lu_xRh_2Si_2$ ($0 \le x \le 1.00$) were grown from In and Zn fluxes as reported. 12-14 The structure and phase purity were checked by x-ray powder diffraction. The high quality of our undoped crystals was confirmed by x-rays rocking curves [(0,0,4) Bragg peak] for various crystals which revealed a mosaic structure of maximum c-axis angular spread of ≤0.015° and a correlation length of ~650 nm (grain size). The electrical residual resistivity ratio $\rho_{300 \text{ K}}/\rho_{1.9 \text{ K}}$ for the In and Zn-flux-grown crystals were 35 and 10, respectively. 12-14 The ESR spectra were taken in $\sim 2 \times 2 \times 0.5$ mm³ single crystals in a Bruker S, X, and Q bands (4.1, 9.5, and 33.8 GHz) spectrometer using appropriated resonators and T-controller systems.

Single resonance of a Kramers doublet ground state with no hyperfine components was observed at all bands. The Dysonian line shape $(A/B \approx 2.5)$ corresponds to a microwave skin depth smaller than the size of the crystals. 15

III. RESULTS AND DISCUSSION

Figure 1 presents at $T=4.2~{\rm K}$ (a) the Yb³⁺ ESR θ dependence of the field for resonance $H_r(\theta)$ and (b) linewidth $\Delta H(\theta)$ in a plane perpendicular to the ab plane for the Influx YbRh₂Si₂ at S, X, and Q bands. The θ dependence of the effective g value can be inferred from $H_r(\theta)$ and it is given by $h\nu/\mu_B H_r(\theta) = g(\theta) = [g_{\perp c}^2 \cos^2 \theta + g_{\parallel c}^2 \sin^2 \theta]^{1/2}$. The solid

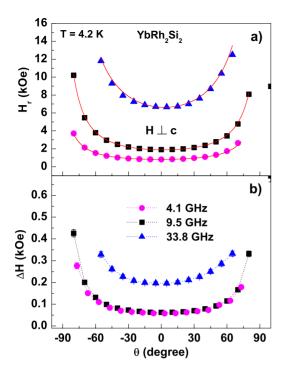


FIG. 1. (Color online) X, S, and Q-band angular dependences of the Yb³⁺ ESR at 4.2 K in a plane perpendicular to the ab plane: (a) $H_r(\theta)$ (solid lines, see text) and (b) $\Delta H(\theta)$ (dashed lines are guides for the eyes).

lines in Fig. 1(a) are simultaneous fittings for the three bands of the $H_r(\theta)$ data to $h\nu/\mu_B g(\theta)$. These fittings give $g_{\parallel c} \lesssim 0.6(4)$ and $g_{\perp c} = 3.60(7)$. Figure 1(b) shows that $\Delta H(\theta)$ for the *S* and *X* bands are about the same, indicating the absence of appreciable low *H*-dependent inhomogeneous broadening. At *Q* band, in contrast, $\Delta H(\theta)$ is significantly broader, suggesting the presence of a *H*-dependent broadening mechanism (see below). Furthermore, for the three bands and away from the *ab* plane, ΔH broadens by ≈ 200 Oe. The $g_{\parallel c}$ -value distribution due to an angle spread of $\approx 0.015^{\circ}$ for the *c* axis (mosaic effect) would only contribute to an inhomogeneous broadening of ≈ 5 Oe and cannot account for the broadening of ≈ 200 Oe.

Figures 2(a) and 2(b) show, respectively, the low-T dependences of ΔH and effective g value of the Yb³⁺ ESR in In-flux-grown YbRh2Si2 measured at the three bands for $H_{\perp c}$. In this T interval and within the error bars, it is found $\Delta H = a + bT$ for the three bands. This suggests a Korringa type of mechanism for the Yb³⁺ spin-lattice relaxation (SLR), i.e., the Yb³⁺ local moment is exchange coupled to the conduction electrons (ces). 16 The residual linewidth aand relaxation rate $b=\Delta H/\Delta T$ are given in Fig. 2(a). The actual determination of the residual linewidth $a = \Delta H(T=0)$ would require measurements at lower T; therefore, the obtained values should be considered just as fitting parameters. However, the large $\Delta H(\theta)$ measured at Q band and at T =4.2 K, relative to those in S and X bands [see Fig. 1(b)], is probably associated to a homogeneous (H-induced) increase in the SLR rate b and to a weak H-dependent inhomogeneous broadening of the residual linewidth. A H-dependent SLR rate b is not expected for a normal local magnetic

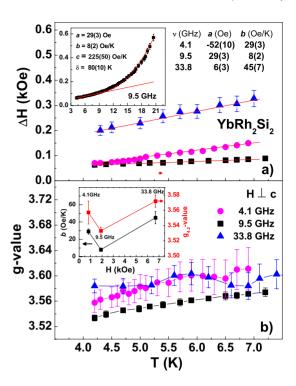


FIG. 2. (Color online) X, S, and Q-band low-T dependences of the Yb³⁺ ESR for $H_{\perp c}$ (a) $\Delta H(T)$ and (b) effective g(T) value. Inset of (a): X-band $\Delta H(T)$ for $4.2 \le T \le 21\,$ K and fitting parameters to $\Delta H(T) = a + bT + c\,\delta/[\exp(\delta/T) - 1]$. Inset of (b): H dependence of b and effective $g_{4,2}$ value.

moment-ce exchange-coupled system, where the Korringa rate is frequency and field independent.¹⁷ However, since the Yb³⁺ and ce magnetic moments carry unlike spins and g values, the H dependence of b, having a minimum value at the X-band field $H \approx 1900$ Oe [see inset of Fig. 2(b)], may be an anomalous manifestation of a bottlenecklike behavior. Figure 2(b) shows that the T dependence of the effective g values is slightly different in the three bands, with minimum effective $g_{4,2}$ values also at the X band. The effective g-value accuracy is much higher than that obtained from $g(\theta)$ of Fig. 1 because proper experimental conditions were chosen for these $H_{\perp c}$ measurements. The inset of Fig. 2(a) shows the X-band $\Delta H(T)$ for $4.2 \le T \le 21$ K. The data were fitted to $\Delta H(T) = a + bT + c\delta/[\exp(\delta/T) - 1]$ taking into consideration all the contributions to ΔH in a metallic host. The first and second terms are the same as above. The third is the relaxation, also via an exchange interaction with the (ce), of a thermally populated Yb³⁺ excited crystal-field state at δ K above the ground state. ¹⁸ The fitting parameters are in the inset of Fig. 2(a). This analysis does not consider any direct Yb³⁺ spin-phonon contribution. ¹⁸ The S and Q-band $\Delta H(T)$ data for $7 \lesssim T \lesssim 20$ K also show exponential behaviors with $c \approx 200(70) \text{Oe/K}$ and $\delta \approx 75(20)$ K.

Figure 3 shows the *X*-band low-*TY*b³⁺ ESR in $Yb_{1-x}Lu_xRh_2Si_2$: (a) $\Delta H(T)$ for x=0 at different θ between $H_{\perp c}$ and $H_{\parallel c}$, (b) $\Delta H(T)$ for $0 \le x \le 0.15$ and $H_{\perp c}$, and (c) the effective g(x,T) for $0 \le x \le 0.10$. $\Delta H(T)$ was fitted to $\Delta H(T)=a+bT$ with parameters given in the insets of Figs. 3(a), 3(b), and 5(a). For $7 \text{ K} \le T \le 20 \text{ K}$, $\Delta H(T)$ also shows exponential behaviors with parameters $c \approx 200(80)\text{Oe/K}$ and

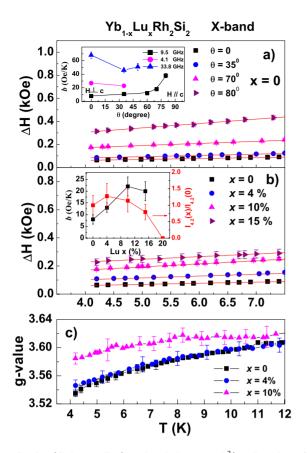


FIG. 3. (Color online) *X*-band low-*T* Yb³⁺ ESR data for Yb_{1-x}Lu_xRh₂Si₂: (a) $\Delta H(T)$ for θ between $H_{\perp c}$ and $H_{\parallel c}$ and x=0, (b) $\Delta H(T,x)$, and (c) effective g(x,T) for various Lu concentrations and $H_{\perp c}$. The parameters of $\Delta H(T)$ =a+bT are in the insets of (a) and (b) and in Fig. 5(a). Inset of (a): $b(\theta)$ for the *S* and *Q* bands. Inset of (b): relative normalized ESR integrated intensities at 4.2 K, $I_{4,2}(x)/I_{4,2}(0)$.

 $\delta \approx 65(30)$ K.¹⁸ The inset of Fig. 3(a) includes $b(\theta)$ for the S and Q bands and inset of Fig. 3(b) presents the relative normalized X-band ESR integrated intensities at 4.2 K as a function of x, $I_{4,2}(x)/I_{4,2}(0)$. The ESR intensities were determined taking into consideration the crystal exposed area, skin depth, and spectrometer conditions. The X-band data show that b increases as H gets close to $H_{\parallel c}$ and as x increases. g(x,T) and g(0,T) are similar but with higher values as x increases. Again, the θ and x dependences of b and T dependences dences of the effective g values resemble a bottleneck and/or dynamiclike behavior. 19 Furthermore, the inset of Fig. 3(b) shows that while for $x \le 0.15$ there is nearly no decrease in the Yb³⁺ ESR intensity, for $0.15 < x \le 1.00$ the intensity drops dramatically and no ESR could be detected; although, interestingly, for x > 0.15 and $T \ge 200$ K, $\chi_{\perp c}(T)$ follows a Curie-Weiss law with a full Yb³⁺ magnetic moment. We should mention that for $x \le 0.15$ there is no appreciable changes in the thermodynamic properties of these compounds. 12,13 The absence of resonance for x > 0.15strongly suggests that the observed ESR for x < 0.15 cannot be associated to a single Yb3+ ion resonance but rather to a resonant collective mode of exchange-coupled Yb3+-ce magnetic moments. We argue that a strong Yb³⁺-ce exchange coupling may broaden and shift the ce resonance toward the

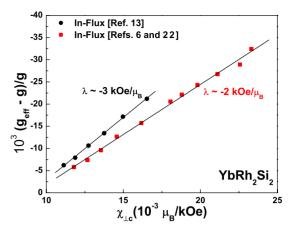


FIG. 4. (Color online) Effective g shift and magnetic-susceptibility correlation, $(g_{\rm eff}-g)/g \propto \lambda \chi_{\perp c}(T)$, for $T \le 15$ K and X band for x=0 crystals (see text).

Yb³⁺ resonance, building up a Yb³⁺-ce coupled mode with bottleneck and/or dynamiclike features. An internal field caused by the Yb³⁺ local moments may be responsible for the shift of the ce resonance.²⁰ Moreover, the Lu doping may disrupt the collective-mode coherence and open the bottleneck and/or dynamic regime.¹⁹

Moreover, within a molecular-field approximation the effective g(x,T) may be written as $g_{\text{eff}} = g[1 + \lambda \chi_{\perp c}(T)]$. Figure 4 presents a plot of $\Delta g/g = (g_{\text{eff}} - g)/g \propto \lambda \chi_{\perp c}(T)$ for T \leq 15 K and X band for our x=0 crystals¹³ and that from Refs. 6 and 22. A linear correlation is obtained with λ values in the interval $-2 \text{ kOe}/\mu_B > \lambda > -3 \text{ kOe}/\mu_B$ which corresponds to a Yb³⁺-Yb³⁺ exchange interaction of J_{ff} ~ -200 mK (~-0.02 meV) within a first-neighbor mean-field approximation.²¹ A Néel temperature of $T_N \cong J_{ff}(g/2)^2$ ~ 500 mK can be roughly estimated from these values. Therefore, these results definitely indicate that the T dependence of the effective g(x,T) is nothing but a consequence of the shift of the field for resonance toward higher fields due to an AF internal molecular field and has nothing to do with a $\Delta g = c/ln(T_K/T)$ divergence. Moreover, the expected g shift caused by the exchange interaction between the Yb3+ and ce local moments J_{fce} can be estimated from the largest measured Korringa-rate value (unbottleneck), $b \cong 40 \text{ Oe/K}$. Within a single band approximation 18 and absence of q dependence of the Yb³⁺-ce exchange interaction $J_{fce}(\mathbf{q})$ $\cong J_{fce}(\mathbf{0})^{23}$ one can write $(\Delta g/g)^2 = \mu_B b/\pi g k_B$, which gives $|\Delta g/g| \lesssim 2\%$. This value is far much smaller than that estimated in Ref. 6 using as a reference the ESR of Yb3+ in the insulator PbMoO₄. On the other hand, from the Korringa relation¹⁸ using $b \cong 40$ Oe/K and assuming a maximum bare density of state per one spin direction at the Fermi level n_E given by the Somerfield coefficient of the specific-heat measurements ($\gamma \approx 900 \text{ mJ/mol K}^2$) (Ref. 24), we extract a lower limit for $|J_{fce}| \gtrsim 3$ meV, which is about 2 orders of magnitude larger than the value found for the Yb3+-Yb3+ exchange interaction $|J_{ff}|$ (see above).

The behavior of the effective g(x,T) shown in Fig. 3(c) is also qualitatively consistent with a collective-mode interpretation in that the effective g factors lie between the Yb³⁺ value of $g \approx 3.6$ and the ce value of $g \approx 2$. The effective g

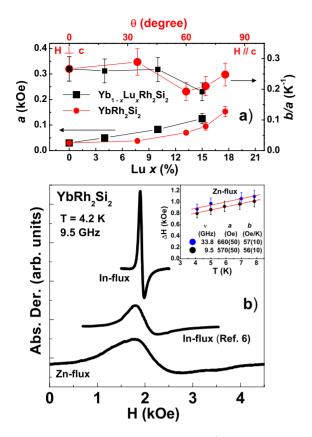


FIG. 5. (Color online) (a) X-band Yb^{3+} ESR: a(x), $a(\theta)$, b(x)/a(x), and $b(\theta)/a(\theta)$ for θ between $H_{\perp c}$ and $H_{\parallel c}$ and $0 \le x \le 0.15$ for $H_{\perp c}$; (b) for comparison, ESR spectra at 4.2 K and $H_{\perp c}$ for single crystals grown in In and Zn fluxes and for the In-flux crystals of Ref. 6. Inset: $\Delta H(T) = a + bT$ for Zn-flux crystals and $H_{\perp c}$ at X and Q bands.

values increase with increasing x for T < 12 K. At higher T, the effective g values are asymptotically T independent with a value of \approx 3.6. In the collective-mode description, the limiting value of g is identified with the Yb³⁺ Kramers doublet gfactor, and the onset of the mode is associated with the decrease in the effective g value below 12 K to a value that lies between the ce and the Yb³⁺. This decrease is less for x > 0, indicating that the disorder weakens the effect of the Yb-ce correlations that give rise to the shift. General theoretical arguments 25 show that the effective g value of the collective mode is the weighted average of the g values of the ce and the Yb³⁺ ions. If one treats the interaction between the ce and the ions in a molecular-field approximation with interaction parameter γ , one obtains an expression for $g_{\rm eff}$ – $g_{\rm Yb}$ of the form $g_{\rm eff} - g_{\rm Yb} = -(g_{\rm Yb} - g_{\rm ce})(g_{\rm Yb}/g_{\rm ce})\gamma\chi_{\rm ce}$, where $\chi_{\rm ce}$ denotes the susceptibility of the ce. Since it is unlikely that χ_{ce} has the same temperature dependence as the measured susceptibility $\chi_{\perp c}(T)$, which is dominated by the contribution from the Yb³⁺ ions, we conclude that the interpretation of the observed g shift as arising from Yb3+-Yb3+ interactions is cor-

Figure 5(a) shows the $a(x, \theta)$ data from Fig. 3. Usually, nonmagnetic impurities cause an inhomogeneous broadening of the ESR line $(a \propto x)$, which is in general attributed to a crystal-field distribution (CFD). ^{17,26} Natural impurities

and/or crystal defects also contribute to a CFD. As we mentioned, the broadening due to a c-axis misorientation of $\lesssim 0.015^\circ$ cannot account for the observed increase in a near $H_{\parallel c}$. Therefore, we attribute this to an inhomogeneous broadening described by a distribution of g values $\sigma_g(x) = \sigma_g(0) + \sigma_g'(x)x$ caused by a CFD. Then, we can write $a(x) = a(0) + \sigma_g'(x)xH_{r\perp c}/g_{\perp c}$ and $a(\theta) = a(0) + \sigma_g(0)H_r(\theta)/g(\theta)$. From our data we obtain $a(0) \approx 29$ Oe, $\sigma_g'(x) \approx 0.0114/\%_{Lu}$, and $\sigma_g(0) \approx 0.0137$. Notice that for $\theta \cong 80^\circ$ and $x \cong 0.15$ these broadenings are comparable. Figure 5(b) presents a comparison between the Yb³+ ESR X-band spectra at 4.2 K and $H_{\perp c}$ for single crystals grown in In and Zn fluxes. The inset displays $\Delta H(T) = a + bT$ and the fitting parameters for the crystal grown in Zn flux at X and Q bands and $H_{\perp c}$. The large a and b values are indications that Zn impurities were incorporated in the crystals. X-ray fluorescence measurements yield Zn concentrations of about 1%.

Our experiments confirm an ESR in YbRh₂Si₂ below T_K $\simeq 25$ K.⁶ However, our results suggest that this ESR corresponds to a strong exchange-coupled Yb³⁺-ce resonant collective mode. The features of this resonant collective mode resemble the bottleneck and/or dynamic scenario for diluted magnetic moments exchange coupled to the ce, both with g $\cong 2$, where in a normal metal the SLR rate b and g value depend on the competition between the Korringa and Overhauser relaxation and the ce SLR. 16,17,26,27 Then, the increase in b by the addition of nonmagnetic impurities to YbRh₂Si₂ (Lu and Zn in Figs. 3(b), 5(a), and 5(b) and La in Ref. 10) may be associated to "opening" the bottleneck regime due to the increase in the ce spin-flip scattering. Hence, we can write b(x) = b(0) + b'(x)x. 17,26 From our data, we estimate $b(0) \approx 8$ Oe/K and a ce spin-flip scattering cross section $b'(x) \approx 1.4(\text{Oe/K})/\%_{\text{Lu}}$. Moreover, the θ dependence of b[see Fig. 3(a)] may be another manifestation of the bottleneck effect. We argue that associated to the increase in a $\propto \sigma_a(0)H_r(\theta)/g(\theta)$ there will be a significant number of detuned Yb3+ ions that may slow down the Overhauser relaxation and contribute to open the bottleneck regime. Assuming $b(\theta) = b(0) + b'(\theta)\sigma_{\alpha}(0)H_{r}(\theta)/g(\theta)$ we estimate b(0) ≈ 7.5 Oe and $b'(\theta)\sigma_{\sigma}(0) \approx 0.0032$ Oe⁻¹. We should mention that to open the bottleneck via detuned Yb3+ ions $[\propto \sigma_{\varrho}(0)H_r(\theta)/g(\theta)]$ is only possible when the g value of the Kramers doublet is strongly anisotropic. Notice that in our case, this effect becomes important for $\theta \gtrsim 60^{\circ}$. Figure 5(a) shows, as expected, that $b(x)/a(x) \approx b(\theta)/a(\theta) \approx 0.26(4)$ for our data, confirming that a g-value distribution $\sigma_a(x)$ due to a CFD is responsible for the increase in b and a in YbRh₂Si₂.

Another striking result reported in Fig. 2 is the *non*monotonic H dependence of b, a, and effective g value of the Yb³⁺-ce *resonant collective mode*. The main difference with the bottleneck scenario given above is that the increase in b at S and Q bands is not followed by a systematic increase in a. Admixtures via Van Vleck terms²⁸ may be disregarded because this contribution should scale with H. Therefore, we believe that the low H tunability^{1,3,34} of the ESR parameters in YbRh₂Si₂ is an "intrinsic" property of the NFL state near a QCP, where the strength of the Yb³⁺-ce magnetic coupling may subtly tune and allows the formation of the *resonant collective mode*. We attribute the absence of low H-dependent ESR results in previous reports⁶ to the presence

of "extrinsic" impurities and/or Rh/Si defects 13,29 that increase the SLR (b) broadening the resonance and hiding the low H dependence of the ESR parameters in the NFL phase (such as for our Zn-flux crystals).

For this material, the Yb3+-ce resonant collective mode presents the strongest bottleneck regime (smallest b) at H ≈ 1900 Oe. However, due to the subtle details of the coupling between the Kondo ions and the ce in a Kondo lattice and to strong impurity effects, these resonant collective modes may not be always observable, unless extreme bottleneck regime is achieved. The proximity to a OCP and/or the presence of enhanced spin susceptibility may favor this condition. 11,30 Recent calculations by Abrahams and Wölfle³¹ suggested that the ESR linewidth may be strongly reduced by a factor involving the heavy-fermion mass and quasiparticle ferromagnetic (FM) exchange interactions (m/m^*) $[1-U\chi_{ff,H}^{+-}(0)]$. These results indicate that the estimation of the linewidth from the Kondo temperature T_K is an overestimation. However, these calculations may not be contemplating all the possibilities and have to be taken with care when applied to the dynamic of the ESR of YbRh₂Si₂ compound because (i) it presents an AF Yb³⁺-Yb³⁺ exchange interaction [although other works in literature have claimed in favor of the existence of FM fluctuation in YbRh₂Si₂ (Refs. 34 and 33)] and (ii) samples with the same thermodynamic properties present quite different linewidths [see Fig. 5(b)]. Furthermore, the anisotropy in the ESR in YbRh₂Si₂ reflects both single-ion crystal-field effects and the Yb3+-Yb3+ and Yb³⁺-ce interactions. In principle, the analysis of crystal-field effects is straightforward although somewhat hindered by the inability to detect a signal when the field is along the c axis. The anisotropy of the Yb³⁺-Yb³⁺ and Yb³⁺-ce is more difficult to determine and in the latter case more critical. The application of the resonant collective-mode model is based on the assumption that the Yb³⁺-ce coupling is dominated by a scalar interaction between the Yb³+ ground-state doublet pseudospins $S_{\rm ps}$ and the spins of the conduction electrons s with the consequence that the total spin $s+S_{\rm ps}$ is approximately constant of the motion. In the presence of uniaxial anisotropy, only the component of the total spin along the symmetry axis is a constant of the motion. How the lower symmetry affects the formation of the collective mode is an unsolved problem requiring further study. The bottleneck scenario for the Yb³+-ce resonant collective mode may also explain the absence of Yb³+ hyperfine ESR structure. Finally, we hope that our results will motivate further theoretical approaches to understand the dynamics of strong exchange-coupled magnetic moments of unlike spins and g values, as Yb³+ and ce, and explore the general existence of a resonant collective mode with a bottleneck and/or dynamiclike behavior.

IV. SUMMARY

In summary, this work reports low H-dependent ESR, below $T_K{\simeq}25\,$ K, in the NFL phase of YbRh₂Si₂ ($T{\lesssim}10\,$ K). It is suggested that the observed ESR in YbRh₂Si₂ corresponds to a Yb³⁺-ce *resonant collective mode* in a strong bottlenecklike regime, which is highly affected by the presence of impurities, defects, and CFD. The analysis of our data allowed us to give estimations for the Yb³⁺-Yb³⁺ exchange parameter J_{ff} and a lower limit for the Yb³⁺-ce exchange parameter $|J_{fce}|$.

ACKNOWLEDGMENTS

We thank FAPESP and CNPq (Brazil) and NSF (USA) for financial support and P. Coleman, E. Miranda, D. J. Garcia, and M. Continentino for fruitful discussions.

¹O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, Phys. Rev. Lett. **85**, 626 (2000).

²P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Phys. Rev. Lett. **89**, 056402 (2002).

³ J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pepin, and P. Coleman, Nature (London) 424, 524 (2003).

⁴R. H. Heffner and M. R. Norman, Comments Condens. Matter Phys. **17**, 361 (1996).

⁵F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).

⁶J. Sichelschmidt, V. A. Ivanshin, J. Ferstl, C. Geibel, and F. Steglich, Phys. Rev. Lett. **91**, 156401 (2003).

⁷ J. Sichelschmidt, J. Wykhoff, H.-A. Krug von Nidda, J. Ferstl, C. Geibel, and F. Steglich, J. Phys. Condens. Matter **19**, 116204 (2007).

⁸ J. Sichelschmidt, J. Wykhoff, H.-A. Krug von Nidda, I. I. Fazlishanov, Z. Hossain, C. Krellner, C. Geibel, and F. Steglich, J.

Phys. Condens. Matter 19, 016211 (2007).

⁹J. Sichelschmidt, J. Ferstl, C. Geibel, and F. Steglich, Physica B 359-361, 17 (2005).

¹⁰ J. Wykhoff, J. Sichelschmidt, J. Ferstl, C. Krellner, C. Geibel, F. Steglich, I. Fazlishanov, and H.-A. Krug von Nidda, Physica C 460-462, 686 (2007).

¹¹C. Krellner, T. Förster, H. Jeevan, C. Geibel, and J. Sichelschmidt, Phys. Rev. Lett. **100**, 066401 (2008).

¹²U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, and Z. Fisk, Phys. Rev. B 77, 104412 (2008).

¹³S. Maquilon, Ph.D. thesis, University of California–Davis (2007); Z. Fisk (private communication).

¹⁴R. W. Hu, J. Hudis, C. Stock, C. L. Broholm, and C. Petrovic, J. Cryst. Growth **304**, 114 (2007).

¹⁵G. Feher and A. F. Kip, Phys. Rev. **98**, 337 (1955); F. J. Dyson, *ibid.* **98**, 349 (1955); G. E. Pake and E. M. Purcell, *ibid.* **74**, 1184 (1948).

¹⁶J. Korringa, Physica (Amsterdam) **16**, 601 (1950); H. Hasegawa, Prog. Theor. Phys. **21**, 483 (1959).

¹⁷C. Rettori, D. Davidov, and H. M. Kim, Phys. Rev. B 8, 5335

- (1973); C. Rettori, D. Davidov, R. Orbach, E. P. Chock, and B. Ricks, *ibid.* **7**, 1 (1973).
- ¹⁸G. E. Barberis, D. Davidov, J. P. Donoso, C. Rettori, J. F. Suassuna, and H. D. Dokter, Phys. Rev. B 19, 5495 (1979).
- ¹⁹C. Rettori, H. M. Kim, E. P. Chock, and D. Davidov, Phys. Rev. B **10**, 1826 (1974).
- ²⁰S. Oseroff, M. Passeggi, D. Wohlleben, and S. Schultz, Phys. Rev. B 15, 1283 (1977).
- ²¹P. G. Pagliuso, D. J. Garcia, E. Miranda, E. Granado, R. Lora Serrano, C. Giles, J. G. S. Duque, R. R. Urbano, C. Rettori, J. D. Thompson, M. F. Hundley, and J. L. Sarrao, J. Appl. Phys. 99, 08P703 (2006).
- ²²J. Custers, P. Gegenwart, C. Geibel, F. Steglich, T. Tayama, O. Trovarelli, and N. Harrison, Acta Phys. Pol. B 32, 3211 (2001).
- ²³D. Davidov, K. Maki, R. Orbach, C. Rettori, and E. P. Chock, Solid State Commun. 12, 621 (1973).
- ²⁴P. Gegenwart, Y. Tokiwa, T. Westerkamp, F. Weickert, J. Custers, J. Ferstl, C. Krellner, C. Geibel, P. Kerschl, K.-H. Müller, and F. Steglich, New J. Phys. 8, 171 (2006).

- ²⁵D. L. Huber, Phys. Rev. B **12**, 31 (1975); **13**, 291 (1976).
- ²⁶C. Rettori, D. Davidov, G. Ng, and E. P. Chock, Phys. Rev. B 12, 1298 (1975).
- ²⁷ A. W. Overhauser, Phys. Rev. **89**, 689 (1953).
- ²⁸ A. Abragam and B. Bleaney, *EPR of Transition Ions* (Clarendon, Oxford, 1970).
- ²⁹D. Louca, J. D. Thompson, J. M. Lawrence, R. Movshovich, C. Petrovic, J. L. Sarrao, and G. H. Kwei, Phys. Rev. B 61, R14940 (2000).
- ³⁰P. Monod, J. Phys. Colloq. **39**, C6-1472 (1978).
- ³¹E. Abrahams and P. Wölfle, Phys. Rev. B **78**, 104423 (2008).
- ³²S. E. Barnes and J. Zitkova-Wilcox, Phys. Rev. B 7, 2163 (1973).
- ³³K. Ishida, K. Okamoto, Y. Kawasaki, Y. Kitaoka, O. Trovarelli, C. Geibel, and F. Steglich, Phys. Rev. Lett. 89, 107202 (2002).
- ³⁴P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, and F. Steglich, Phys. Rev. Lett. **94**, 076402 (2005).
- ³⁵ D. Davidov, C. Rettori, R. Orbach, A. Dixon, and E. P. Chock, Phys. Rev. B **11**, 3546 (1975).