9 research outputs found

    Design of Cascaded H Bridge STATCOM with Distributed Control

    No full text
    Aiming at the problem of low redundancy in the structure of the cascaded H-bridge STATCOM. This paper studies and designs a cascaded H-bridge STATCOM device based on STM32 distributed control. The article introduces the basic topology of the device and the realization principle of the control system. The turn-on and turn-off time of the MOSFET in each H-bridge is calculated by using the law of minimum harmonics, realize the output of the fitted sine wave. A simulation model of 12H bridge cascade is built in the EMTP power system electromagnetic transient analysis simulation software. The simulation results show the correctness and reliability of the design

    Table_1_Rapid seedling emergence of invasive Phytolacca americana is related to higher soluble sugars produced by starch metabolism and photosynthesis compared to native P. acinosa.xlsx

    No full text
    Seedling emergence is an essential event in the life cycle of plants. Most invasive plants have an advantage in population colonization over native congeners. However, differential seedling emergence between invasive plants and native congeners, especially their mechanisms, have rarely been explored. In this study, we show that the seedlings of invasive Phytolacca americana emerge faster compared to native P. acinosa. Genome-wide transcriptomes of initially germinated seeds versus seedlings at 4 days after germination (DAG) suggested that differentially expressed genes (DEGs) in the photosynthesis-antenna proteins pathway were up-regulated in both P. americana and P. acinosa, while DEGs in starch and sucrose metabolism were significantly down-regulated in P. americana. Gene expression analysis indicated that photosynthesis-related DEGs reached their highest level at 3 DAG in P. americana, while they peaked at 4 DAG in P. acinosa. We also identified one β-amylase gene in P. americana (PameAMYB) that showed the highest expression at 1 DAG, and two β-amylase genes in P. acinosa that expressed lower than PameAMYB at 0 and 1 DAG. Enzymatic activity of β-amylases also suggested that P. americana had the highest activity at 1 DAG, which was earlier than P. acinosa (at 4 DAG). Soluble sugars, the main source of energy for seedling emergence, were showed higher in P. americana than in P. acinosa, and reached the highest at 4 DAG that positively affected by photosynthesis. These results indicate that the rapid seedling emergence of invasive P. americana benefited from the high soluble sugar content produced by starch metabolism and photosynthesis. Altogether, this work contributes to our fundamental knowledge on physiological and molecular mechanisms for plant invasion success.</p

    Image_1_Rapid seedling emergence of invasive Phytolacca americana is related to higher soluble sugars produced by starch metabolism and photosynthesis compared to native P. acinosa.pdf

    No full text
    Seedling emergence is an essential event in the life cycle of plants. Most invasive plants have an advantage in population colonization over native congeners. However, differential seedling emergence between invasive plants and native congeners, especially their mechanisms, have rarely been explored. In this study, we show that the seedlings of invasive Phytolacca americana emerge faster compared to native P. acinosa. Genome-wide transcriptomes of initially germinated seeds versus seedlings at 4 days after germination (DAG) suggested that differentially expressed genes (DEGs) in the photosynthesis-antenna proteins pathway were up-regulated in both P. americana and P. acinosa, while DEGs in starch and sucrose metabolism were significantly down-regulated in P. americana. Gene expression analysis indicated that photosynthesis-related DEGs reached their highest level at 3 DAG in P. americana, while they peaked at 4 DAG in P. acinosa. We also identified one β-amylase gene in P. americana (PameAMYB) that showed the highest expression at 1 DAG, and two β-amylase genes in P. acinosa that expressed lower than PameAMYB at 0 and 1 DAG. Enzymatic activity of β-amylases also suggested that P. americana had the highest activity at 1 DAG, which was earlier than P. acinosa (at 4 DAG). Soluble sugars, the main source of energy for seedling emergence, were showed higher in P. americana than in P. acinosa, and reached the highest at 4 DAG that positively affected by photosynthesis. These results indicate that the rapid seedling emergence of invasive P. americana benefited from the high soluble sugar content produced by starch metabolism and photosynthesis. Altogether, this work contributes to our fundamental knowledge on physiological and molecular mechanisms for plant invasion success.</p

    LINC02159 promotes non-small cell lung cancer progression via ALYREF/YAP1 signaling

    No full text
    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) have emerged as key regulators of cancer development and progression, and as promising biomarkers for the diagnosis and prognosis of cancer. In this study, we identified a new lncRNA (LINC02159) that was upregulated in the tumor tissues and serum of non-small cell lung cancer (NSCLC) patients. We demonstrated that knockdown of LINC02159 inhibited NSCLC cell proliferation, migration, and invasion, but induced cell apoptosis and cell cycle arrest in vitro and retarded tumor growth in vivo, while overexpression of LINC02159 led to the opposite effect. We discovered that LINC02159 was highly correlated with cancer growth and metastasis-related pathways by using transcriptomic analysis and that YAP1 was a potential target gene of LINC02159. Mechanistically, LINC02159 bound to the Aly/REF export factor (ALYREF) to enhance the stability of YAP1 messenger RNA (mRNA) via m5C modification, which led to the overexpression of YAP1 and the activation of the Hippo and β-catenin signaling pathways in NSCLC cells. Rescue experiments showed that LINC01259 promoted NSCLC progression in a YAP1- and ALYREF-dependent manner. In conclusion, LINC02159 plays an oncogenic role in NSCLC progression by regulating ALYREF/YAP1 signaling, and it has the potential to be utilized as a diagnostic marker and therapeutic target for NSCLC

    Design of Monovalent Cerium-Based Metal Organic Frameworks as Bioinspired Superoxide Dismutase Mimics for Ionizing Radiation Protection

    No full text
    Superoxide dismutase (SOD) is one of the major antioxidants in vivo and is expected to play critical roles on the defense against reactive oxygen species (ROS)-mediated damages, such as ionizing radiation damages. Herein, inspired by the function and structure of natural SODs and cerium oxide nanozymes, two monovalent cerium-based metal organic frameworks (Ce-MOFs), CeIIIBTC and CeIVBTC, were designed for superoxide radical (O2•–) elimination and ionizing radiation protection. These two Ce-MOFs selectively scavenge O2•– and are excellent SOD mimics. Like natural SODs and cerium oxide nanozymes, the SOD-like catalytic mechanism of Ce-MOFs involves a cycle between Ce(IV) and Ce(III). Furthermore, by constructing monovalent Ce-MOFs, we found that high-valent CeIVBTC are more effective SOD-like nanozymes compared to CeIIIBTC. With smaller size, better monodispersity, and more effective SOD-like activity, CeIVBTC nanozymes were further applied for ionizing radiation protection. Both in vitro and in vivo results demonstrated that CeIVBTC nanozymes could efficiently scavenge ROS, prevent cells from γ-ray radiation-induced cell viability decrease and DNA damages, and improve the survival rate of irradiated mice by recovering the bone marrow DNA damage and alleviating oxidative stress of tissues. The protective effect and good biocompatibility of CeIVBTC nanozymes will enable the development of Ce-MOFs-based radioprotectants and facilitate treatment of other ROS-related diseases

    SALL4 promotes angiogenesis in gastric cancer by regulating VEGF expression and targeting SALL4/VEGF pathway inhibits cancer progression

    No full text
    Abstract Background Spalt-like protein 4 (SALL4) is a stemness-related transcription factor whose abnormal re-expression contributes to cancer initiation and progression. However, the role of SALL4 in cancer angiogenesis remains unknown. Methods Analyses of clinical specimens via TCGA datasets were performed to determine the expression level and clinical significance of SALL4 in STAD (Stomach Adenocarcinoma). SALL4 knockdown, knockout, and overexpression were achieved by siRNA, CRISPR/Cas9, and plasmid transfection. The effects of conditioned medium (CM) from SALL4 knockdown or overexpression of gastric cancer cells on endothelial cell proliferation, migration, and tube formation were investigated by CCK-8 assay, transwell migration assay, and tube formation assay. The regulation of VEGF gene expression by SALL4 was studied by qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assay, and electrophoretic mobility shift assay (EMSA). Engineered exosomes from 293T cells loaded with si-SALL4-B and thalidomide were produced to test their therapeutic effect on gastric cancer progression. Results SALL4 expression was increased in STAD and positively correlated with tumor progression and poor prognosis. SALL4-B knockdown or knockout decreased while over-expression increased the promotion of human umbilical vein endothelial cells (HUVEC) cell proliferation, migration, and tube formation by gastric cancer cell-derived CM. Further investigation revealed a widespread association of SALL4 with angiogenic gene transcription through the TCGA datasets. Additionally, SALL4-B knockdown reduced, while over-expression enhanced the expression levels of VEGF-A, B, and C genes. The results of ChIP and EMSA assays indicated that SALL4 could directly bind to the promoters of VEGF-A, B, and C genes and activate their transcription, which may be associated with increased histone H3-K79 and H3-K4 modifications in their promoter regions. Furthermore, si-SALL4-B and thalidomide-loaded exosomes could be efficiently uptaken by gastric cancer cells and significantly reduced SALL4-B and Vascular Endothelial Growth Factor (VEGF) expression levels in gastric cancer cells, thus inhibiting the pro-angiogenic role of their derived CM. Conclusion These findings suggest that SALL4 plays an important role in angiogenesis by transcriptionally regulating VEGF expression. Co-delivery of the functional siRNA and anticancer drug via exosomes represents a useful approach to inhibiting cancer angiogenesis by targeting SALL4/VEGF pathway
    corecore