12 research outputs found

    Perillaldehyde Inhibits AHR Signaling and Activates NRF2 Antioxidant Pathway in Human Keratinocytes

    No full text
    The skin covers the outer surface of the body, so the epidermal keratinocytes within it are susceptible to reactive oxygen species (ROS) generated by environmental pollutants such as benzo(a)pyrene (BaP), a potent activator of aryl hydrocarbon receptor (AHR). Antioxidant activity is generally mediated by the nuclear factor-erythroid 2-related factor-2 (NRF2) and heme oxygenase-1 (HO1) axis in human keratinocytes. Perillaldehyde is the main component of Perilla frutescens, which is a medicinal antioxidant herb traditionally consumed in East Asia. However, the effect of perillaldehyde on the AHR/ROS and/or NRF2/HO1 pathways remains unknown. In human keratinocytes, we found that perillaldehyde (1) inhibited BaP-induced AHR activation and ROS production, (2) inhibited BaP/AHR-mediated release of the CCL2 chemokine, and (3) activated the NRF2/HO1 antioxidant pathway. Perillaldehyde is thus potentially useful for managing inflammatory skin diseases or disorders related to oxidative stress

    Vacuum chamber considerations for improved organic light-emitting diode lifetime

    No full text
    We investigated the influence of vacuum chamber impurities on the lifetime of highly efficient TADF-based OLEDs. Batch-to-batch lifetime variations are clearly correlated with the results of contact angle measurements, which reflect the amount of impurities present in the chamber. Introduction of ozone gas can clean the impurities out of the vacuum chamber, reducing the contact angle to less than 10°. In the vacuum chamber of a new deposition system designed using resin-free vacuum components, various plasticizers and additive agents were initially detected by WTD-GC-MS analysis, but these impurities vanished after ozone gas cleaning. Devices fabricated in the new chamber exhibited lifetimes that are approximately twice those of OLEDs fabricated in a pre-existing chamber. These results suggest that impurities, particularly from plasticizers, in the vacuum chamber greatly influence the OLED lifetime
    corecore