67 research outputs found

    Arabidopsis BTB/POZ protein-dependent PENETRATION3 trafficking and disease susceptibility

    Get PDF
    The outermost cell layer of plant roots (epidermis) constantly encounters environmental challenges. The epidermal outer plasma membrane domain harbours the PENETRATION3 (PEN3)/ABCG36/PDR8 ATP-binding cassette transporter that confers non-host resistance to several pathogens. Here, we show that the Arabidopsis ENDOPLASMIC RETICULUM-ARRESTED PEN3 (EAP3) BTB/POZ-domain protein specifically mediates PEN3 exit from the endoplasmic reticulum and confers resistance to a root-penetrating fungus, providing prime evidence for BTB/POZ- domain protein-dependent membrane trafficking underlying disease resistance.The PENETRATION3 (PEN3/ABCG36/PDR8) ATP-binding cassette transporter of Arabidopsis thaliana is a crucial component of preinvasive defence against some fungal and bacterial non-host pathogens entering by direct penetration1,2,3,4. In above-ground organs, PEN3 is recruited to sites of pathogen attack at the cell surface3,4. In seedling roots, PEN3 polarly localizes to the epidermal outer membrane domain in the absence of pathogens5,6. Root epidermal cells display four major polar plasma membrane domains: the outer domain facing the environment, the inner domain oriented towards the cortical cell layer, the shootward-oriented, apical, and the root tip-oriented, basal, domain6. Proteins in the outer domain that function in regulating the transport of inorganic compounds include, for example, the NIP5;1 boric acid uptake channel7. Factors required for PEN3 and NIP5;1 trafficking from the trans-Golgi network to the outer domain have been identified8,9,10, and exocyst complex components promote polar tethering of several outer domain proteins9,11. However, factors that specifically mediate trafficking of polar outer membrane cargos involved in responses to root-penetrating pathogens remain to be discovered.In a genetic screen for mislocalization of PEN3 fused to green-fluorescent protein (PEN3- GFP) in the root epidermis of seedlings9, we recovered one recessive mutant in which PEN3-GFP localized to a cytoplasmic structure resembling the endoplasmic reticulum (ER) (Fig. 1a–d). This er-arrested pen3-1 (eap3-1) mutation indistinguishably affected localization of PEN3-GFP from that of PEN3-mCherry (Supplementary Fig. 1a,b), which colocalized with the ER-intrinsic chaperone BIP in the eap3-1 mutant (Supplementary Fig. 1c,d), corroborating an ER arrest of PEN3

    A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    No full text
    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.The authors gratefully acknowledge the financial support from the Vice-Chancellor’s Fellowship Grant and URC small grant at the University of Wollongong

    A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    Get PDF
    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation

    CD133-Positive Cells Might Be Responsible for Efficient Proliferation of Human Meningioma Cells

    Get PDF
    Owing to lack of appropriate model systems, investigations of meningioma biology have come to a stop. In this study, we developed a comprehensive digestion method and defined a culture system. Using this method and system, primary meningioma cells in conditioned suspension medium and a hypoxic environment could be amplified in spheres and were passaged for more than ten generations. Meningioma sphere cells were positive for meningioma cell markers and negative for markers of neural cell types. Importantly, we found the cells expressed the stem cell marker, CD133, but not nestin. All of the tumor sphere cell populations showed a slower degree of cell proliferation than that of human glioma cells and fetal neural stem cells (NSCs). Further studies showed that the proliferative rate was positively correlated with CD133 expression. The higher the CD133 expression, the faster the cell proliferation. With the increase in cell generations, the cell proliferation rate gradually slowed down, and CD133 expression also decreased. Single CD133+ cells rather than CD133− cells could form spheres. Thus, the results above indicated that those cells expressing CD133 in spheres might be stem-like cells, which may be responsible for efficient amplification of human meningioma cells. Decreased expression of CD133 may lead to the failure of long-term passaging

    Numerical comparison between Berkovich and conical nano-indentations: mechanical behaviour and micro-texture evolution

    Get PDF
    A crystal plasticity finite element method (CPFEM) model has been developed to investigate the influence of indenter geometry on the mechanical behaviour and micro-texture evolution during nano-indentation of single crystal aluminium. The developed model has been validated by comparison with experimental observations. The numerical results show that indenter geometry influences the load-indentation depth curve, hardness and elastic modulus significantly. The surface profile, equivalent plastic strain distribution and micro-texture evolution during nano-indentation have been analysed in detail

    Effect of Stiffener Strength on the Failure Mode of Stiffened Plate under Confined Explosion: Experimental Studies

    No full text
    The objective of this work was to investigate the effect of stiffener strength on the failure mode of an outer-stiffened plate subjected to confined blast loading. A relatively rigid box with one open side was designed, to provide a confined space, and the stiffened plate was fixed onto the open side. Various field blast experiments of stiffened plates with different dimensions were conducted. Transducers were placed on typical points to record the overpressure history. The post-explosion deformation was drawn utilizing the 3D scanner technique, and the failure modes of the stiffened plates were examined in detail. The effect of plate thickness, stiffener thickness, stiffener height, and stand-off distance on the failure mode of the stiffened plate is discussed. It was shown that two typical failure modes were observed in the stiffened plates, namely uniform global dome deformation and nonuniform dome deformation, with local lattice along the stiffeners. The transformation of these two deformation modes originated from the relative strength of the stiffener compared to the plate, hence a relative strength factor was proposed to clarify the division

    Effect of Stiffener Strength on the Failure Mode of Stiffened Plate under Confined Explosion: Experimental Studies

    No full text
    The objective of this work was to investigate the effect of stiffener strength on the failure mode of an outer-stiffened plate subjected to confined blast loading. A relatively rigid box with one open side was designed, to provide a confined space, and the stiffened plate was fixed onto the open side. Various field blast experiments of stiffened plates with different dimensions were conducted. Transducers were placed on typical points to record the overpressure history. The post-explosion deformation was drawn utilizing the 3D scanner technique, and the failure modes of the stiffened plates were examined in detail. The effect of plate thickness, stiffener thickness, stiffener height, and stand-off distance on the failure mode of the stiffened plate is discussed. It was shown that two typical failure modes were observed in the stiffened plates, namely uniform global dome deformation and nonuniform dome deformation, with local lattice along the stiffeners. The transformation of these two deformation modes originated from the relative strength of the stiffener compared to the plate, hence a relative strength factor was proposed to clarify the division

    A Framework for Lateral Membrane Trafficking and Polar Tethering of the PEN3 ATP-Binding Cassette Transporter

    No full text
    The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity
    • …
    corecore