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Numerical comparison between Berkovich and conical nano-indentations: 

mechanical behaviour and micro-texture evolution 

Mao Liu, Cheng Lu1, Kiet Tieu, Hailiang Yu 

School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 

Northfields Avenue, Wollongong, NSW 2522, Australia 

Abstract 

A Crystal Plasticity Finite Element Method (CPFEM) model has been developed to 

investigate the influence of indenter geometry on the mechanical behaviour and micro-texture 

evolution during nano-indentation of single crystal aluminium. The developed model has 

been validated by comparison with experimental observations. The numerical results show 

that indenter geometry influences the load-indentation depth curve, hardness and elastic 

modulus significantly. The surface profile, equivalent plastic strain distribution and micro-

texture evolution during nano-indentation have been analysed in detail. 

Keywords: Crystal plasticity finite element method; Nano-indentation; Texture; 

Single crystal aluminium 

1. Introduction 

Nano-indentation is one of the most popular methods used to investigate the mechanical 

properties of small-volume bulk materials and thin film materials. A variety of indenter 

shapes, including pyramidal, conical and spherical, are adopted in nano-indentation. Among 

them, the Berkovich indenter with a tetrahedral shape is the most frequently used. The 

popularity of the Berkovich indenter is due to the following features: 1) it has a constant area-

to-depth ratio that helps yield a hardness value that is independent of the load; 2) it is sharper 

than most of other indenters and the sharpness enables measurement of the smaller possible 

testing volume. Conical indenters with various semi-apex angles have also been widely used 

[1, 2], especially in simulations of nano-indentation. A conical indenter with a 70.3° semi-

apex angle has the same projected area as the Berkovich indenter. An illustration of the major 

geometrical parameters of the Berkovich and conical indenters is shown in Fig.1. There is 

always a concern that different indenter geometries may give different mechanical properties.  

                                                            
1 Corresponding author. Lu C., E‐mail: chenglu@uow.edu.au 



 

Fig.1. Geometrical parameters of indenters 

(a) Berkovich indenter; (b) conical indenter with a 70.3° semi-apex angle. 

     

Bhattacharya and Nix [3] investigated the indentation process by the classic elasto-plastic 

Finite Element Method (FEM). In their two-dimensional simulation, a conical indenter with a 

68° semi-apex angle was used to simulate the pyramidal indenter used in the experiment. 

They found that this did not cause any noticeable difference in the load-indentation depth 

response of the material. Three-dimensional elasto-plastic FEM simulations of indentation 

using different indenters have been carried out by Li et al. [2]. It has been found that the 

load–indentation depth curves of the Berkovich and Vickers indenters were close to those of 

a conical indenter having a semi-apex angle of 70.3°, despite differences in the stress and 

strain fields under the indenters. Sakharova et al. [1] carried out three-dimensional numerical 

simulations of Berkovich, Vickers and conical nano-indentations for both bulk and composite 

film/substrate materials. For bulk materials with higher ratios of the residual indentation 

depth after unloading (hf) to the indentation depth at the maximum load (hmax), the load–

indentation depth curves of the three indenters were very similar. However, Sakharova et al. 

[1] found that for bulk materials with lower hf/hmax ratios, the Berkovich indenter yielded the 

highest hardness and the conical indenter had the lowest hardness, while the hardness value 

obtained by the Vickers indenter lied between the two others. The difference has been 

attributed to different geometries of the plastic strain regions induced by three types of the 

indenters. Recently, Kang et al.[4] have numerically investigated the effects of indenter 

geometry on the load–indentation depth curve, hardness and elastic modulus using the classic 

elasto-plastic FEM. They found that the Berkovich indenter gave about 25% higher hardness 

values than its equivalent conical indenter with a 70.3° semi-apex angle. Qin et al. [5] also 



reported based on the FEM analysis that difference in hardness measured by the Berkovich 

indenter and its equivalent conical indenter was about 13% for copper. The results of both 

Kang et al. [4] and Qin et al. [5] are in contrast to the conclusions of Bhattacharya and Nix 

[3] and Li et al. [2]. Swaddiwudhipong et al. [6] used three-dimensional and two-dimensional 

FEM modeling to study the load–indentation depth response of a wide range of elasto-plastic 

materials obeying power law strain-hardening for both the Berkovich indenter and its 

equivalent conical indenter. The results demonstrated that the equivalency between these two 

indenters in terms of the load-indentation depth curve was not valid across the range of 

materials properties under study. Shi et al. [7] reported that the widely used equivalence 

between the Berkovich indenter and its equivalent conical indenter based on equal projected 

area leaded to significant errors in micro-indentation. The reason is that despite the same 

projected area, the Berkovich indenter has a more complex shape than the conical indenter, 

which leads to larger strain and strain gradient, and therefore higher indentation hardness. 

Shim et al. [8] also found that a significant difference between the two indenters exists for the 

contact areas and contact stiffnesses. 

    The classic elasto-plastic FEM have been widely used in the most above studies. In the 

present study a crystal plasticity finite element method (CPFEM) model will be developed to 

simulate nano-indentations of the Berkovich and conical indenters. The dependence of 

hardness and elastic modulus on indenter geometry will be discussed in details. Evolution of 

micro-texture subject to nano-indentation will be analysed. 

2 Three-dimensional CPFEM simulation model 

    The crystal plasticity theory is based on the assumption that plastic deformation is the 

cumulative effect of crystalline slips in all activated slip systems. Details of the crystal 

plasticity theory can be found in Ref [9]. The crystal plasticity constitutive model used in the 

present study follows the approach described by Asaro [10]. It was incorporated into the 

implicit finite element code ABAQUS/Standard through a User-defined MATerial (UMAT) 

subroutine. The UMAT subroutine provides the Jacobian matrix for the constitutive model, 

and updates the stresses and the solution-dependent state variables. In the present study, we 

adopted the UMAT framework initially developed by Huang [11] and used Bassani and Wu’s 

[12] formulation of the hardening model which has been described in Ref.[13]. The 

formulations of the rate-dependent hardening model used in the present study can be 

expressed as [14]:  
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where γሶ ଴
ሺఈሻ is the reference (initial) value of the shear strain rate, which is a constant for all 

slip systems. n is the strain rate-sensitive exponent. Both γሶ ଴
ሺ஑ሻ and n are material parameters. 

τୡ
ሺ஑ሻ is the critical resolved shear stress of the slip system α, which represents the strength of 

the material. 

    The rate of change of the critical resolved shear stress is expressed by [15]: 
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here h஑ஒ is the hardening modulus including the self-hardening of each system (α=β) and 

latent hardening (α≠β); q is the latent hardening parameter; 	ߛ଴ is the reference slip value; γ is 

the shear strain; ߬଴ is the initial critical resolved shear stress; ߬ଵ is the breakthrough stress 

corresponding to initiation of large plastic flow; ݄଴ is the hardening modulus just after the 

initial yield; ݄௦ is the hardening modulus during easy glide and ఈ݂ఉ  is the magnitude of a 

particular slip interaction between two slip systems α and β.  

 

    ఈ݂ఉ  depends on the type of dislocation junction formed between slip systems α and β, 

which in turn depends on the geometric relation between the two slip systems. Slip 



interactions in FCC crystals can classified into five groups and, consequently, the factors ఈ݂ఉ 

are given in terms of five constants, a1-a5 [16]: 1) a1 is associated with the collinear junction 

between two perfect dislocations of the same Burgers vector gliding on different slip planes; 

2) a2 is associated with the Hirth lock junction between two perfect dislocations with 

perpendicular Burgers vectors gliding on intersecting slip planes; 3) a3 is associated with the 

coplanar junction between two perfect dislocations that belong to the same slip plane; 4) a4 is 

associated with the glissile junction between two perfect dislocations gliding on intersecting 

slip planes, and the resultant Burgers vector is on one of the two slip planes; 5) a5 is 

associated with the sessile (Lomer lock) junction between two perfect dislocations gliding on 

intersecting slip planes, but the resultant Burgers vector is not on either of the two slip planes. 

 

 

Fig.2 3D Nano-indentation model setup 

(a) simulation model using the Berkovich indenter; (b) mesh morphology on the top surface 

     

    The computational domain/mesh of the three dimensional nano-indentation model 

developed in this study is shown in Fig. 2. The Berkovich indenter and the conical indenter 

(70.3° semi-apex angle and a 200 nm radius) have been used and treated as rigid bodies in the 

simulations. The dimensions of the simulated specimen were 40 m, 40 m and 20 m and 

the coordinate system has been marked in Fig. 2. One base edge of the Berkovich indenter 

was paralleled to the X axis. The height of the specimen was 20 times the maximum 

indentation depth (1 µm). This satisfies the 10% rule that the specimen should be at least 10 

times thicker than the depth of indentation in order to avoid the influence of the boundary 

condition [16]. 



    The simulated specimen consisted of 17040 eight-node brick elements and 18352 nodes 

with reduced integration (element id: C3D8R) to ensure that the mesh was fine enough, 

especially near the contact area with the indenter. The total number of nodes and elements 

were about 7 times those used in most published papers [17, 18]. In order to compare with the 

experimental data the simulated specimen was set to be a single crystal aluminium with the 

same crystallographic orientation as used in the experiment of Ref [19], namely [2 3 16തതതത], [11 

2ത 1] and [1ത	6ഥ  1ത] along the X, Y and Z axes, respectively. 

    All the nodes on the bottom surface and the four surrounding surfaces of the simulated 

specimen were constrained along their normal to the surfaces. The load-indentation depth 

curve has been found to be independent of the frictional condition [1]. Therefore, a 

frictionless condition at the indenter/specimen contact interface was adopted in this study. 

During the simulation the indenter moved down along the Z direction for about 34000 

simulation steps until it reaches the indentation depth of 1000 nm, followed by moving up to 

release the load. 

    Franciosi et al. [20] and Lu et al. [13] reported that the factor ఈ݂ఉ  can be chosen as 

aଵ ൌ aଶ	=	aଷ=1.75, aସ	= 2 and aହ =2.25 for single crystal aluminium. Three elastic moduli 

used were C11 = 112 GPa, C12 = 66 GPa and C44 = 28 GPa. Table 1 shows the other material 

parameters used in the hardening model (Eqs. (1)-(4)). These parameters have been validated 

in the CPFEM simulations of rolling, tensile test and equal-channel angular pressing [9, 13, 

21]. 

Table 1 Parameters used in the work-hardening model. 

n 
γሶ ଴ 

(1/s) 
h଴  

(MPa) 
h௦  

(MPa) 
τଵ 

(MPa) 
τ଴ 

(MPa) 
γ଴ q 

300 0.0001 100 0.01 6.3 6 0.001 1 

3. Results and discussion 

    Kuo and Huang [19] preformed nano-indentation experiments on a single crystal 

aluminium using a Berkovich indenter. The crystallographic orientation of their specimen is 

identical to the one used in the present simulation. Fig. 3 compares the experimental load-

indentation depth (P-h) curve reported in Ref. [19] and the simulated result using the 

Berkovich indenter. It can be seen that the simulated curve is in reasonable agreement with 

the experimental one. At smaller indentation depths the simulated load is higher than the 



measured load. The discrepancy has been reduced as the indentation depth increases. It is 

noteworthy that the material parameters used in the CPFEM simulation were obtained by 

matching the experimental results of plane strain compressions in our previous studies [22, 

23]. We did not tune any material parameter to fit the measured load-indentation depth curve 

in this study. There is a gap between two unloading curves at the maximum indentation depth. 

This is due to the fact that the indenter has been remained at the maximum indentation depth 

for a period of time in the experiment, while the load was immediately released once the 

maximum indentation depth was reached in the simulation. 

 
Fig. 3 Comparison of the load-indentation depth curves between experiment and simulation. 

    A comparison of the load-indentation depth curves for the Berkovich indenter and the 

conical indenter is shown in Fig. 4. It is obvious that indenter geometry influences the load-

indentation depth curve. The load-indentation depth curve of the Berkovich indenter is higher 

than that of the conical indenter. The indentation hardness (H) was calculated by [24] 
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ܲ

24.56݄௖
ଶ 																																																																							ሺ5ሻ 

݄௖ ൌ ݄ െ ݇
ܲ
݀ܲ
݄݀

																																																																		ሺ6ሻ 

where P is indentation load at the maximum load and h is the indentation depth at the 

maximum load. hc represents the contact depth. The factor k depends upon the indenter. For 

the Berkovich indenter k is equal to 0.75, while k = 0.72 is for the conical indenter. dp/dh is 

the slope of the unloading curve. The elastic modulus (E) was determined by [24] 
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where ߚ  is a constant which is equal to 1.0 and 1.034 for the conical indenter and the 

Berkovich indenter, respectively. ν is the Poisson’s ratio of the specimen. ν=0.347 was used 

in this study.  

 

    The calculated indentation hardness and elastic modulus for the Berkovich indenter are 

0.263 GPa and 69.17 GPa respectively. The calculated indentation hardness and elastic 

modulus for the conical indenter are 0.244 GPa and 77.20 GPa respectively. It is clear that 

hardness estimated by the Berkovich indenter is higher than that by the conical indenter. The 

elastic modulus estimated by the Berkovich indenter is close to the standard value of Young’s 

Modulus (70.4 GPa) for aluminium [25], while the conical indenter gives a higher elastic 

modulus value. 

 
Fig. 4 Comparison of the load-indentation depth curves of the Berkovich indenter and the 

conical indenter. 

 

 

Fig. 5 Simulated contour plots of the out-of-plane displacement for two indenters  

(a) conical indenter; (b) Berkovich indenter. 



Fig. 5 compares the simulated contour plots of the out-of-plane displacement on the top 

surfaces. A twofold symmetry in the out-of-plane displacement can be observed in Fig. 5(a). 

Fig. 5(b) looks similar to Fig. 5(a) even though the pattern in Fig. 5(b) is not perfectly 

symmetrical. It can be seen that indenter geometry does not affect the pattern of the out-of-

plane profile significantly. Peralta et al. [26] also found that the sinking-in and piling-up 

behaviour depend on in-plane crystallographic orientations rather than the orientation of the 

indenter.  

 
Fig. 6 Comparisons of the surface profile along Line 2 for the two indenters. 

    Two lines, named Line 1 and Line 2, are marked in Fig. 5. Fig.6 compares the simulated 

surface profiles of two indenters along Line 2 after unloading. The result indicates that the 

piling-up is almost symmetrical for the conical indenter. However, the piling-up generated by 

the Berkovich indenter is unsymmetrical. The piling-up of the Berkovich indenter at the left-

hand side of the indent is lower than that of the conical indenter. This suggests that although 

indenter geometry does not affect the piling-up pattern significantly, it does change the 

magnitude of the piling-up. 

Figs 7(a) and 7(b) show the distributions of the equivalent plastic strain at the maximum 

indentation depth on a through-thickness cross section passing through Line 1, which is 

called CS1 in the following context. The maximum strain is located near the left-hand side of 

the indent and close to the indent tip for the Berkovich indenter, while it appears in the 

conical indenter case on both sides of the indent and also beneath the indent tip. The 

maximum value of the equivalent plastic strain is higher for the Berkovich indenter than for 

the conical indenter. The equivalent plastic strain distribution is shallower and less ‘spherical’ 

for the Berkovich indenter than for the conical one, as seen in Fig. 7(a) and Fig. 7(b). These 

observations suggest that the presence of sharp edges in indenter geometry can influence the 



plastic strain distribution in the indented specimen, which is consistent with the prediction by 

Sakharova [1].  

Figs. 7(c) and 7(d) demonstrate the distributions of the equivalent plastic strain on a 

through-thickness cross section passing through Line 2, which is called CS2 in the following 

context. The maximum strain is located on the right-hand side of the indent for the Berkovich 

indenter. For the conical indenter case, it appears beneath the indenter tip and expands to both 

sides of the indent tip. In general, the shape of the plastic deformation zone generated by 

Berkovich indenter is different to that generated by the conical indenter. That is the reason 

why the load and hardness estimated by Berkovich indenter are different to those by the 

conical one.   

  

 

Fig. 7 Distributions of the equivalent strain at the maximum indentation depth: 

(a) along Line 1 for the Berkovich indenter; (b) along Line 1 for the conical indenter; (c) 

along Line 2 for the Berkovich indenter; (d) along Line 2 for the conical indenter. 

 

    To analyse evolution in the crystallographic orientation during the indentation process, 

misorientation of each node relative to its initial orientation was partitioned into three 



components representing the lattice rotation angles around the X, Y and Z axes, respectively, 

using the method proposed by Wert et al. [27]. Contour maps of the lattice rotation angles 

around the X, Y and Z axes (θX, θY and θZ) on CS1 are shown in Fig. 8 for the Berkovich 

indenter. Positive values and negative values represent counter-clockwise rotation and 

clockwise rotation, respectively. It can be seen in Fig. 8 that the lattice rotations mainly occur 

near the side surfaces of the indent. Fig. 8(a) shows that large counter-clockwise rotation 

around the X axis (θX) dominates near the right-hand side surface of the indent, while θX is 

very small near another side surface of the indent except for the region close to the indent tip. 

The lattice rotation angle around the Y axis (θY) has different signs near two side surfaces of 

the indent as shown in Fig. 8(b). It is noted from Fig. 8(b) that the lattice has rotated in the 

clockwise sense to about 10o near the left-hand side surface of the indent. As observed in Fig. 

8(c) the counter-clockwise rotation around the Z axis dominates around the indent.  

 

 

Fig. 8 Contour maps of the lattice rotation angles on CS1 for the Berkovich indenter 

(a) around the X axis; (b) around the Y axis; (c) around the Z axis. 

 



    Fig 9 shows the contour maps of the lattice rotation angles around the X, Y and Z axes on 

CS1 for the conical indenter. It can be seen from Fig. 9 that both clockwise and counter 

clockwise rotations around three directions exist. This is consistent with the observations in 

Ref. [28, 29] which reported the lattice rotates along different directions on two side surfaces 

of the indent made by a conical indenter. However, it is clear that the patterns of the lattice 

rotation angle observed in Fig. 9 are different to those in Fig. 8, which indicates that indenter 

geometry significantly influences micro-texture evolution during the indentation process.  

 

 

 

Fig. 9 Contour maps of the lattice rotation angles on CS1 for the conical indenter 

(a) around the X axis; (b) around the Y axis; (c) around the Z axis. 

     

    Fig. 10 shows the contour maps of the lattice rotation angles around the X, Y and Z axes 

on CS2 of the specimen indented by the Berkovich indenter. It is found in Fig. 10(a) that 

there are two large lattice rotation regions located beneath the indent tip and with opposition 

signs. Unlike Fig. 8(a) the largest rotation angle around the X axis (θX) is not located on the 

side surface of the indent in Fig. 10(a). Fig. 10(b) displays that the largest negative θY exists 

on the left-hand side surface of the indent. The negative θY expands from the left-hand side 



surface of the indent to the region below the indent tip. The largest positive θY has been 

found in the piling-up region at the left-hand side of the indent. Fig. 10(c) shows that the 

largest positive and negative θZ values appear near the left-hand side surface of the indent and 

the right-hand piling-up region, respectively.  

 

 

 

Fig. 10 Contour maps of the lattice rotation angles on CS2 for the Berkovich indenter 

(a) around the X axis; (b) around the Y axis; (c) around the Z axis. 

     

    Fig. 11 shows the contour maps of the lattice rotation angles around the X, Y and Z axes 

on CS2 for the conical indenter. The patterns of the rotation angles in Fig. 11(b) and Fig. 11(c) 

are similar to those observed in Fig. 9(b) and Fig. 9(c), respectively. This is due to the 

symmetrical shape of the conical indenter. However, careful inspection indicates that the 

pattern in Fig. 11(a) is different to that in Fig. 9(a). The reason can be attributed to different 

initial lattice orientations relative to the indentation direction in two figures. Comparison 

between Fig. 10 and Fig. 11 clearly depicts that the patterns of the rotation angles are 

different for the Berkovich indenter and the conical indenter. This suggests again that the 



geometry of the indenter profoundly affects the rotation of the lattice orientation induced by 

nano-indentation.  

 

 

Fig. 11 Contour maps of the lattice rotation angles on CS2 for the conical indenter 

(a) around the X axis; (b) around the Y axis; (c) around the Z axis. 

    The differences in the rotation angle between the Berkovich indenter and the conical 

indenter indicates that different slip systems are activated by the two indenters during nano-

indenation. In order to confirm this, an element marked in Fig.8a and Fig.9a with a red dot 

and a capital letter E has been selected for analysis. Fig. 12 shows the shear strain rate (γሶ) for 

all the 12 slip systems of this element. For the Berkovich indentation case, four slip systems 

((11-1)[011], (1-11)[10-1], (-111)[101] and (11-1)[101]) are active during the early stage of 

indentation with the indentation depth of less than 200 nm. As the indentation depth increases 

the slip systems (11-1)[101] and (111)[-110] become the dominant active slip systems. For 

the conical indentation case more slip systems are active at the early stage of indentation. The 

slip system (111)[0-11] and (-111)[110] have the positive γሶ , whereas other six slip systems 

((111)[10-1], (1-11)[011], (1-11)[10-1], (11-1)[011], (-111)[0-11] and (11-1)[-110]) have the 

negative γሶ . As the indentation depth increases four slip systems ((111)[0-11], (1-11)[011], 



(111)[-110] and (11-1)[101]) become the major active slip systems.  It is clear that different 

slip systems could be activated by different types of the indenters. This is the reason why 

different distributions of the equivalent plastic strain and lattice rotation angles have been 

observed for two different indenters and in turn why the load-displacement curve, elastic 

modulus and hardness measured by the two indenters are not the same.  
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Fig.12 Shear strain rates of all the 12 slip systems for a selected element 

(a) Berkovich indenter; (b) conical indenter 



4. Conclusions 

1) A crystal plasticity FEM model has been developed to simulate the nano-indentation 

process. The simulated load-displacement curve has been validated by comparison 

with experimental results.  

2) The simulated load-indentation depth curves have been compared for two different 

indenters: Berkovich indenter and conical indenter. It has been found that the two 

simulated curves are different and the Berkovich indenter has higher hardness and 

lower elastic modulus than the conical indenter. It has also been seen that the piling-

up patterns only depend on the in-plane crystallographic orientations rather than the 

geometry of the indenter. However, the geometry of the indenter does affect the 

magnitude of the piling-up. 

3) The equivalent plastic strain has been analysed on two through-thickness cross 

sections. It has been found that the deformation zone is smaller for the Berkovich 

indenter than for the conical one. The location and the magnitude of the maximum 

equivalent strain are different for the two indenters. 

4) A detailed analysis has been carried out to investigate the rotation of the lattice 

orientation during the indentation process. It has been found that indenter geometry 

significantly affects the distributions of the lattice rotation angles around the indent.  

5) The differences in the equivalent plastic strain distribution and the lattice rotation 

angle distribution between the two indenters are considered to be the main reasons to 

cause difference in mechanical behaviour of the specimens indented by two different 

indenters. 
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