18 research outputs found

    Neutron diffraction and diffraction contrast imaging for mapping the TRIP effect under load path change

    Get PDF
    The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additionally, the spatial distribution of the TRIP effect triggered by stress concentrations is visualized using neutron Bragg edge imaging including, e.g., weak positions of the cruciform geometry. The results demonstrate that neutron diffraction contrast imaging offers the possibility to capture the TRIP effect in objects with complex geometries under complex stress states.Fil: Polatidis, Efthymios. Paul Scherrer Institute; SuizaFil: Morgano, Manuel. Paul Scherrer Institute; SuizaFil: Malamud, Florencia. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Departamento Haces de Neutrones del Ra10 - Cab.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Bacak, Michael. Paul Scherrer Institute; SuizaFil: Panzner, Tobias. Paul Scherrer Institute; Suiza. Swissneutronics; SuizaFil: Van Swygenhoven, Helena. Paul Scherrer Institute; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Strobl, Markus. Paul Scherrer Institute; Suiz

    Bragg edge tomography characterization of additively manufactured 316L steel

    Get PDF
    In this work we perform a neutron Bragg edge tomography of stainless steel 316L additive manufacturing samples, one as built via standard laser powder bed fusion, and one using the novel three-dimensional (3D) laser shock peening technique. First, we consider conventional attenuation tomography of the two samples by integrating the signal for neutron wavelengths beyond the last Bragg edge, to analyze the bulk density properties of the material. This is used to map defects, such as porosities or cracks, which yield a lower density. Second, we obtain strain maps for each of the tomography projections by tracking the wavelength of the strongest Bragg edge corresponding to the {111} lattice plane family. Algebraic reconstruction techniques are used to obtain volumetric 3D maps of the strain in the bulk of the samples. It is found that not only the volume of the sample where the shock peening treatment was carried out yields a higher bulk density, but also a deep and remarkable compressive strain region. Finally, the analysis of the Bragg edge heights as a function of the projection angle is used to describe qualitatively crystallographic texture properties of the samples.Fil: Busi, Matteo. Laboratory for Neutron Scattering and Imaging; SuizaFil: Polatidis, Efthymios. Laboratory for Neutron Scattering and Imaging; SuizaFil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Kockelmann, Winfried. No especifíca;Fil: Morgano, Manuel. No especifíca;Fil: Kaestner, Anders. Laboratory for Neutron Scattering and Imaging; SuizaFil: Tremsin, Anton. University of California at Berkeley; Estados UnidosFil: Kalentics, Nikola. Ecole Polytechnique Fédérale de Lausanne; SuizaFil: Logé, Roland. Ecole Polytechnique Fédérale de Lausanne; SuizaFil: Leinenbach, Christian. No especifíca;Fil: Shinohara, Takenao. No especifíca;Fil: Strobl, Markus. Laboratory for Neutron Scattering and Imaging; Suiz

    Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    Get PDF
    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components

    Microstructural Characterization of a Single Crystal Copper Rod Using Monochromatic Neutron Radiography Scan and Tomography: A Test Experiment

    No full text
    This paper reports the analysis of a single crystal copper rod aiming to characterize the microstructural features related to the homogeneity of the single crystal growth and the presence, shape and extension of spatially distributed misaligned grains or areas. The analytical method used for such analysis is wavelength scan neutron radiography and monochromatic neutron tomography. Such methods allow determination of the extent of differently oriented single crystal areas, identifying the most part of the rod volume as a single domain. It was also possible to characterize the spatial distribution and the degree of alignment of local point-like or extended defects

    Conceptual design of supermirror polarizers at the European Spallation Source

    No full text
    Polarized neutrons will be made available on many European Spallation Source (ESS) instruments. There are a number of technologies available for polarizers and polarization analyzers which will be used at the ESS. The selection of the technology for an instrument is based on the performance and the constraints of the instrument. We will focus on the design of polarizing supermirror devices using Monte Carlo ray tracing simulation as an integral part of instrument design process. A McStas module has been developed to simulate a multichannel V-cavity polarizer, seeking the appropriate parameters to be incorporated into the respective instrument. The performance of such polarizers is studied for three instruments at ESS (MIRACLES (backscattering spectrometer), BIFROST (indirect geometry spectrometer) and ODIN (imaging)) with different requirements and constraints, where the suitability of this kind of devices can be assessed. For the first two instruments, where there is no strong constraint on the placement of the polarizer, the optimal configurations show excellent performance over the whole required wavelength ranges. However, in ODIN, due to more strict constraints in the placement of the polarizer, the performance is more dependent on the wavelength in the required wavelength range and other options may need to be considered

    A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening

    No full text
    Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40% or 80% respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54% and 104% respectively, compared to the conventional LSP treatment

    Disclosing mineralogical phases in medioeval iron nails by non-destructive neutron techniques

    No full text
    There is not only one methodology for the study of mineralogical phases in archaeological samples. In this paper, we discuss a strategy applied to ancient iron nail samples completely based on non-destructive analyses. The archaeological samples come from the archaeological site of Valle delle Forme (province of Brescia–Italy) and date back to the 1300–1400 ad. Neutron-based techniques, like time-of-flight neutron diffraction and neutron tomography, have been used to determine the mineralogical composition and the structure of nails. An independent check for the assessment of the presence of different mineralogical phases was given by Raman spectroscopy. The combination of different non-destructive techniques has provided very useful information on their chemical composition, nature of the patina and corrosion features of the nails (also in the bulk of the samples)

    Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imaging

    Get PDF
    Ni-YSZ (nickel - yttria stabilized zirconia) is a material widely used for electrodes and supports in solid oxide electrochemical cells. The mechanical and electrochemical performance of these layers, and thus the whole cell, depends on their microstructure. During the initial operation of a cell, NiO is reduced to Ni. When this process is conducted under external load, like also present in a stack assembly, significant deformations of NiO/Ni-YSZ composite samples are observed. The observed creep is orders of magnitude larger than the one observed after reduction during operation. This phenomenon is referred to as accelerated creep and is expected to have a significant influence on the microstructure development and stress field present in the Ni-YSZ in solid oxide electrochemical cells (SOCs), which is highly important for the durability of the SOC. In this work we present energy selective neutron imaging studies of the accelerated creep phenomenon in Ni/NiO-YSZ composite during reduction and also during oxidation. This approach allowed us to observe the phase transition and the creep behavior simultaneously in-situ under SOC operation-like conditions
    corecore