145 research outputs found

    Analysis of combined radial velocities and activity of BD+20 1790: evidence supporting the existence of a planetary companion

    Get PDF
    Context. In a previous paper we reported a planetary companion to the young and very active K5Ve star BD+20 1790. We found that this star has a high level of stellar activity (log R'_HK = -3.7) that manifests in a plethora of phenomena (starspots, prominences, plages, large flares). Based on a careful study of these activity features and a deep discussion and analysis of the effects of the stellar activity on the radial velocity measurements, we demonstrated that the presence of a planet provided the best explanation for the radial velocity variations and all the peculiarities of this star. The orbital solution resulted in a close-in massive planet with a period of 7.78 days. However, a paper by Figueira et al. (2010, A&A, 513, L8) questioned the evidence for the planetary companion. Aims. This paper aims to more rigorously assess the nature of the radial velocity measurements with an expanded data set and new methods of analysis. Methods. We have employed Bayesian methods to simultaneously analyse the radial velocity and activity measurements based on a combined data set that includes new and previously published observations. Results. We conclude that the Bayesian analysis and the new activity study support the presence of a planetary companion to BD+20 1790. A new orbital solution is presented, after removing the two main contributions of stellar jitter, one that varies with the photometric period (2.8 days) and another that varies with the synodic period of the star-planet system (4.36 days). We present a new method to determine these jitter components, considering them as second and third signals in the system. A discussion on possible star-planet interaction is included, based on the Bayesian analysis of the activity indices, which indicates that they modulate with the synodic period. We propose two different sources for flare events in this system: one related to the geometry of the system and the relative movement of the star and planet, and a second one purely stochastic source that is related to the evolution of stellar surface active regions. Also, we observe for the first time the magnetic field of the star, from spectropolarimetric data

    Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids

    Get PDF
    The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples

    Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    Get PDF
    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity

    Molecular simulation of methane hydrate growth confined into a silica pore

    Get PDF
    Financiaciado para publicación en acceso aberto: Universidade de Vigo/CISUGThe growth of a methane hydrate seed within a silica slit pore of fixed width has been studied using All- Atom Molecular Dynamics (AA-MD). An AA force field has been used to describe the molecules of the solid silica substrate, with a-quartz crystalline structure. The crystallisation of hydrates in confined geometries is not well understood yet, and the objective of this work is to study the hydrate growth inside a silica pore using molecular simulation. Both NVT and NpT ensembles were used in the AA-MD simulations to analyse the hydrate growth from an initial seed. Results showed that the boundary conditions imposed by the nanometric slit pore yielded a hydrate with structural defects, filling the accessible space between the silica walls. The water molecules which were not incorporated to the initial seed hydrate formed a high density water layer trapped between the silica walls and the crystallised hydrate. These results provide an interesting insight into the hydrate crystallisation process in confined geometries, resembling those found in natural hydrate deposits.Ministerio de Ciencia e Innovación | Ref. PID2021-125081NB-I00FEDER | Ref. SOE2/P1/P0823Xunta de Galicia | Ref. FSE-GALICIA 2014–2020Fundação para a Ciência e a Tecnologia | Ref. UIDB/50011/2020Fundação para a Ciência e a Tecnologia | Ref. UIDP/50011/2020Fundação para a Ciência e a Tecnologia | Ref. LA/ P/0006/2020Ministerio de Ciencia e Innovación | Ref. PID2019-105898GA-C22Comunidad de Madrid | Ref. APOYOJOVENES- 01HQ1S-129-B5E4M

    Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach

    Get PDF
    The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water–tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid–liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility with the alkyl parts of the tetrahydrofuran ring chain and the hydrogen bonding between water and the ether group. A minimum number of unlike interaction parameters are fitted to give the optimal representation of the most representative features of the binary phase diagrams. In the particular case of tetrahydrofuran(1) + water(2), two sets of intermolecular potential model parameters are proposed to describe accurately either the hypercritical point associated with the closed-loop liquid–liquid immiscibility region or the location of the mixture lower- and upper-critical end-points. The theory is not only able to predict the type of phase behavior of each mixture, but also provides a reasonably good description of the global phase behavior whenever experimental data are availabl

    Coarse-grain molecular dynamics simulation framework to unravel the interactions of surfactants on silica surfaces for oil recovery

    Get PDF
    A coarse-grained molecular dynamics (CG-MD) framework, based on the MARTINI 3.0 model, was developed to characterise the interactions between surfactants and oil-silica substrates to resemble chemical enhanced oil recovery (EOR) processes. Previous computational studies, at the atomistic scale, addressed interactions between surfactants and oil over diverse surfaces. Even though simulations provided significant information involved throughout different stages of oil extraction from surfaces, atomistic scale simulations fail when approaching the time and size scale required to address the surfactant phase behaviour that can also impact the oil detachment. Our coarse-grained model aims to overcome the lack of computer approaches that can tackle the surfactant self-assembly and the formation of ordered structures in the removal of oil from silica substrates. A new MARTINI 3.0 coarse-grain framework to model silica surfaces and aqueous solutions of CiEj and C16TAB surfactants is presented. Coarse-grained simulations entailing a silica surface, covered by dodecane or eicosane were brought in contact with aqueous solutions of C16TAB and four nonionic CiEj (C8E6, C8E12, C12E6, C16E12) surfactants to resemble EOR processes with a size/time scale several orders of magnitude larger than previous simulations. The impact of concentration and hydrophilic-lipophilic balance (HLB) of surfactants on the detachment of dodecane and eicosane from the silica surface was evaluated by visual inspection of the simulation snapshots and the evolution of the solvent accessible surface areas (SASA). In contrast with previous atomistic simulations, nonionic surfactants seem the best candidates for an optimal oil removal from silica-based surfaces whereas the presence of charged moieties hinders the process. Diluted nonionic CE aqueous solutions were shown to be the most effective solutions, unlike more concentrated ones. When compared with dodecane, eicosane was less prone to be removed from the silica surface due to the increased alkyl chain length. Our study demonstrates that not only the surfactant nature but also the phase behaviour, clearly impact the detachment of oil from silica surfaces. This is an important aspect to consider for a proper choice of surfactants in EOR processes, that is only attainable through a coarse-grained framework.publishe

    Promoting higher added value to a finfish species rejected to sea

    Get PDF
    332 páginas.-- José Ramón Fuertes ... et al.This project aimed to the development of the research and the technology necessary to promote higher added value to fishing activity. This is to be achieved by obtaining profit from a finfish species (“Rockcod”, Patagonotothen spp.) not known to consumers and currently discarded by the EU fishing fleet operating in the South West Atlantic, in order to supply the EU seafood industry with a good quality raw material for human food manufacturing. Use of this species, caught as a by-catch in the existing fisheries targeting hakes and cephalopods, should also increase the profitability of the fleet, contribute to maintaining employment and help to counterbalance the negative effects of fishing activity and discards in the ecosystem. The main scientific-technological objectives and expected achievements were the following: - Description of the fisheries - Improved knowledge of the biology of the species - Biomass assessment - Estimation of catches and discards - Analysis of the spatial and temporal distribution of the resource. Fishery forecasting and testing - Sensorial, Microbiological, Nutritional and Biochemical Evaluation of Rock cod - Development of the technical modifications on board commercial vessels - Development of new processed products from frozen Rock codContract number Q5CR-2002-71709Peer reviewe

    Computational study of the interplay between intermolecular interactions and CO2 orientations in type I hydrates

    Get PDF
    Carbon dioxide (CO2) molecules show a rich orientation landscape when they are enclathrated in type I hydrates. Previous studies have described experimentally their preferential orientations, and some theoretical works have explained, but only partially, these experimental results. In the present paper, we use classical molecular dynamics and electronic density functional theory to advance in the theoretical description of CO2 orientations within type I hydrates. Our results are fully compatible with those previously reported, both theoretical and experimental, the geometric shape of the cavities in hydrate being, and therefore, the steric constraints, responsible for some (but not all) preferential angles. In addition, our calculations also show that guest–guest interactions in neighbouring cages are a key factor to explain the remaining experimental angles. Besides the implication concerning equation of state hydrate modeling approximations, the conclusion is that these guest–guest interactions should not be neglected, contrary to the usual practice

    The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles

    Get PDF
    The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved

    Late-type members of young stellar kinematic groups - I. Single stars

    Get PDF
    This is the first paper of a series aimed at studying the properties of late-type members of young stellar kinematic groups. We concentrate our study on classical young moving groups such as the Local Association (Pleiades moving group, 20-150 Myr), IC 2391 supercluster (35 Myr), Ursa Major group (Sirius supercluster, 300 Myr), and Hyades supercluster (600 Myr), as well as on recently identified groups such as the Castor moving group (200 Myr). In this paper we compile a preliminary list of single late-type possible members of some of these young stellar kinematic groups. Stars are selected from previously established members of stellar kinematic groups based on photometric and kinematic properties as well as from candidates based on other criteria such as their level of chromospheric activity, rotation rate and lithium abundance. Precise measurements of proper motions and parallaxes taken from the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, and published radial velocity measurements are used to calculate the Galactic space motions (U, V W) and to apply Eggen's kinematic criteria in order to determine the membership of the selected stars to the different groups. Additional criteria using age-dating methods for late-type stars will be applied in forthcoming papers of this series. A further study of the list of stars compiled here could lead to a better understanding of the chromospheric activity and their age evolution, as well as of the star formation history in the solar neighbourhood. In addition, these stars are also potential search targets for direct imaging detection of substellar companions
    corecore