45 research outputs found

    Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions

    Get PDF
    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits

    Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.)

    Get PDF
    Background We have identified a kind of parthenocarpy in zucchini squash which is associated with an incomplete andromonoecy, i.e. a partial conversion of female into bisexual flowers. Given that andromonoecy in this and other cucurbit species is caused by a reduction of ethylene production in the female flower, the associated parthenocarpic development of the fruit suggested the involvement of ethylene in fruit set and early fruit development.Results We have compared the production of ethylene as well as the expression of 13 ethylene biosynthesis and signalling genes in pollinated and unpollinated ovaries/fruits of two cultivars, one of which is parthenocarpic (Cavili), while the other is non-parthenocarpic (Tosca). In the latter, unpollinated ovaries show an induction of ethylene biosynthesis and ethylene signal transduction pathway genes three days after anthesis, which is concomitant with the initiation of fruit abortion and senescence. Fruit set and early fruit development in pollinated flowers of both cultivars and unpollinated flowers of Cavili is coupled with low ethylene biosynthesis and signalling, which would also explain the partial andromonoecy in the parthenocarpic genotype. The reduction of ethylene production in the ovary cosegregates with parthenocarpy and partial andromonoecy in the selfing progeny of Cavili. Moreover, the induction of ethylene in anthesis (by ethephon treatments) reduced the percentage of bisexual parthenocarpic flowers in Cavili, while the inhibition of ethylene biosynthesis or response (by AVG and STS treatments) induces not only andromonoecy but also the parthenocarpic development of the fruit in both cultivars.Conclusions Results demonstrate that a reduction of ethylene production or signalling in the zucchini flower is able to induce fruit set and early fruit development, and therefore that ethylene is actively involved in fruit set and early fruit development. Auxin and TIBA treatments, inducing fruit set and early fruit development in this species, also inhibit ethylene production and the expression of ethylene biosynthesis and response genes. A model is presented that discusses the crosstalk between ethylene and auxin in the control of fruit set and early fruit development in zucchini squash.This work was supported by grants AGL2008-05619-C02-02/ALI and AGL2011-30568-C02-02/ALI, partly funded by ERDF (European Regional Development Fund) and by the Spanish Ministry of Science and Innovation, and grant CVI-02617, funded by ERDF and by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain. C.M. and Z.M. acknowledge FPU program scholarships from MEC, Spain. S.M. is funded by grant PTA2011-479-I from the Spanish Ministry of Science and Innovation

    Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops

    Get PDF
    Cucurbitaceae is one of the most economically important plant families, and includes some worldwide cultivated species like cucumber, melons, and squashes, and some regionally cultivated and feral species that contribute to the human diet. For centuries, cucurbits have been appreciated because of their nutritional value and, in traditional medicine, because of their ability to alleviate certain ailments. Several studies have demonstrated the remarkable contents of valuable compounds in cucurbits, including antioxidants such as polyphenols, flavonoids, and carotenoids, but also tannins and terpenoids, which are abundant. This antioxidant power is beneficial for human health, but also in facing plant diseases and abiotic stresses. This review brings together data on the antioxidant properties of cucurbit species, addressing the genetic and pre- and postharvest factors that regulate the antioxidant content in different plant organs. Environmental conditions, management, storage, and pre- and postharvest treatments influencing the biosynthesis and activity of antioxidants, together with the biodiversity of this family, are determinant in improving the antioxidant potential of this group of species. Plant breeding, as well as the development of innovative biotechnological approaches, is also leading to new possibilities for exploiting cucurbits as functional products

    Effect of Ethylene-Insensitive Mutation etr2b on Postharvest Chilling Injury in Zucchini Fruit

    Get PDF
    Zucchini is a vegetable fruit that is very susceptible to postharvest chilling injury, and fruit ethylene production is correlated with chilling injury sensitivity, such that the more tolerant the cultivar, the lower is its ethylene production. It is expected that zucchini fruit with reduced sensitivity to ethylene would have a higher chilling injury tolerance. In this study, we compared the postharvest fruit quality of wild type and ethylene-insensitive mutant etr2b, in which a mutation was identified in the coding region of the ethylene receptor gene CpETR2B. Flowers from homozygous WT (wt/wt), mutant plants in homozygous (etr2b/etr2b) and heterozygous (wt/etr2b) were hand-pollinated, and all fruits were harvested with the same length, at about 8 days after pollination. After harvesting, fruit of each genotype was randomly divided in 3 batches of 12 fruits each (four replications with three fruits each), and then stored at 4 °C and 95% RH. At 0, 7, and 14 days after cold storage, each batch was used to assess ethylene production, respiration rate, weight and firmness loss, chilling injury, and oxidative stress metabolites. The results showed a lower chilling injury associated with lower cold-induced ethylene production in the mutant fruit, in comparison with the WT fruit. These data demonstrated that the ethylene-insensitive etr2b mutant fruit was more tolerant to chilling injury, confirming that basal ethylene in the still undamaged fruit could function as a modulator of post-harvest chilling injury. Moreover, the higher chilling tolerance of the etr2b mutant fruit was not associated with MDA content, but was concomitant with a reduction in the accumulation of hydrogen peroxide in the refrigerated mutant fruit

    Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    Get PDF
    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.This work was supported by grants AGL2011-30568-C02/ALI from the Spanish Ministry of Science and Innovation, and AGR1423 from the Consejería de Economía, Innovación y Ciencia, Junta de Andalucía, Spain. Z.M. acknowledges FPU program scholarships from MEC, Spain. S.M. is funded by grant PTA2011-479-I from the Spanish Ministry of Science and Innovation

    Structural and functional characterization of genes PYL‑PP2C‑SnRK2s in the ABA signalling pathway of Cucurbita pepo

    Get PDF
    Background The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. Results The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. Conclusions The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.Grants PID2020-118080RB-C21, UAL18-BIOB017-B, and P20_00327, funded by the Spanish Ministry of Science and Innovation, the University of Almería and Junta de AndalucíaFPI Scholarship Program from the Spanish Ministry of Science and InnovationD.I scholarship programmer from MCI (DIN2018–010127) with the company Green Breeding Biotech S. L

    Exogenous abscisic acid mitigates chilling injury in zucchini during cold storage by eliciting a time-dependent shaping of specialized metabolites

    Get PDF
    Chilling injury is a physiological disorder that appears when zucchini fruit is stored at low temperatures, causing a severe diminution of the quality and nutraceutical value. Abscisic acid (ABA) has been proven to be a key natural agent preventing low-temperature damage. This work aimed to elucidate the changes in exocarp metabolites of zucchini fruit during cold storage and the mechanisms underlying the protective effects of ABA through an untargeted metabolomics approach. A time-dependent metabolic modulation could be observed in response to cold storage, where exogenously applied ABA elicited distinct metabolomic signatures. Supervised statistics were then used to identify methyl jasmonate, heliespirone C, and (indol-3-yl)acetyl-L-phenylalanine as the key compounds in the fruit exocarp having the highest discriminant ability. Noteworthy, the untargeted phenolic profile of zucchini exocarps was also distinctively modulated amid the different treatments. Overall, the implication of ABA in accumulating specialized metabolites, having a dual role in chilling injury mitigation during cold stress and increasing the nutraceutical properties of zucchini fruits, was observed.Grants (AGL2017-82885-C2-2-R and PID2020-118080RB-C22) of the Ministry of Science and Innovation (Spanish Government)Contrato-Puente from the Plan Propio of the University of Granad

    Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions

    No full text
    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits

    Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage

    No full text
    This work examines the effect of a treatment with 1 mM of γ-aminobutyric acid (GABA) on zucchini fruit during postharvest cold storage. Specifically, the effect of GABA on postharvest quality was measured, as well as its implication in the GABA shunt and other related metabolic pathways. The treatments were performed in Sinatra, a variety of zucchini highly sensitive to low-temperature storage. The application of GABA improved the quality of zucchini fruit stored at 4 °C, with a reduction of chilling-injury index, weight loss, and cell death, as well as a lower rate of electrolyte leakage. GABA content was significantly higher in the treated fruit than in the control fruit at all times analyzed. At the end of the storage period, GABA-treated fruit had higher contents of both proline and putrescine. The catabolism of this polyamine was not affected by exogenous GABA. Also, over the long term, the treatment induced the GABA shunt by increasing the activities of the enzymes GABA transaminase (GABA-T) and glutamate decarboxylase (GAD). GABA-treated fruit contained higher levels of fumarate and malate than did non-treated fruit, as well as higher ATP and NADH contents. These results imply that the GABA shunt is involved in providing metabolites to produce energy, reduce power, and help the fruit to cope with cold stress over the long term.</p
    corecore