30 research outputs found

    Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the β-TrCP ubiquitin ligase receptor

    Get PDF
    The discs large (hDlg) tumor suppressor is intimately involved in the control of cell contact, polarity, and proliferation by interacting with several components of the epithelial junctional complex and with the APC tumor suppressor protein. In epithelial cells, hDlg protein stability is regulated through the ubiquitin-proteasome pathway: hDlg is actively degraded in isolated cells, whereas it accumulates upon cell-cell contact. During neoplastic transformation of epithelial cells, loss of the differentiated morphology and progression toward a metastatic phenotype correlate with down-regulation of hDlg levels and loss of contact-dependent stabilization. Here we show that upon hyperphosphorylation, hDlg interacts with the beta-TrCP ubiquitin ligase receptor through a DSGLPS motif within its Src homology 3 domain. As a consequence, overexpression of beta-TrCP enhances ubiquitination of Dlg protein and decreases its stability, whereas a dominant negative beta-TrCP mutant inhibits this process. Furthermore, a mutant Dlg protein that is unable to bind beta-TrCP displays a higher protein stability and is insensitive to beta-TrCP. Using RNA interference, we also demonstrate that endogenous beta-TrCP regulates hDlg protein levels in epithelial cells. Finally, we show that beta-TrCP selectively induces the degradation of the membrane-cytoplasmic pool, without affecting the nuclear pool of hDlg

    Targeting mutant p53 in cancer: a long road to precision therapy

    Get PDF
    The TP53 tumor suppressor is the most frequently mutated gene in human cancers. In recent years, a blooming of research efforts based on both cell lines and mouse models have highlighted how deeply mutant p53 proteins affect fundamental cellular pathways with cancer-promoting outcomes. Neomorphic mutant p53 activities spread over multiple levels, impinging on chromatin structure, transcriptional regulation and microRNA maturation, shaping the proteome and the cell's metabolic pathways, and also exerting cytoplasmic functions and displaying cell-extrinsic effects. These tumorigenic activities are inextricably linked with the blend of highly corrupted processes that characterize the tumor context. Recent studies indicate that successful strategies to extract core aspects of mutant p53 oncogenic potential and to identify unique tumor dependencies entail the superimposition of large-scale analyses performed in multiple experimental systems, together with a mindful use of animal models. This will hopefully soon lead to the long-awaited inclusion of mutant p53 as an actionable target of clinical antitumor therapies

    High Mobility Group I Proteins Interfere with the Homeodomains Binding to DNA

    Get PDF
    Homeodomains (HDs) constitute the DNA binding domain of several transcription factors that control cell differentiation and development in a wide variety of organisms. Most HDs recognize sequences that contain a 5'-TAAT-3' core motif. However, the DNA binding specificity of HD-containing proteins does not solely determine their biological effects, and other molecular mechanisms should be responsible for their ultimate functional activity. Interference by other factors in the HD/DNA interaction could be one of the processes by which HD-containing proteins achieve the functional complexity required for their effects on the expression of target genes. Using gel-retardation assay, we demonstrate that two members of the high mobility group I (HMGI) family of nuclear proteins (HMGI-C and HMGY) can bind to a subset of HD target sequences and inhibit HDs from binding to the same sequences. The inhibition of the HD/DNA interaction occurs while incubating HMGI-C with DNA either before or after the addition of the HD. The reduced half-life of the HD.DNA complex in the presence of HMGI-C, and the shift observed in the CD spectra recorded upon HMGI-C binding to DNA, strongly suggest that structural modifications of the DNA are responsible for the inhibition of the HD.DNA complex formation. Moreover, by co-transfection experiments we provide evidence that this inhibition can occur also in vivo. The data reported here would suggest that HMGI proteins may be potential regulators of the function of HD-containing proteins and that they are able to interfere with the access of the HD to their target genes

    The Transcriptional Repressor hDaxx Potentiates p53-dependent Apoptosis

    Get PDF
    p53 and its homologues p73 and p63 are transcription factors that play an essential role in modulating cell cycle arrest and cell death in response to several environmental stresses. The type and intensity of these responses, which can be different depending on the inducing stimulus and on the overall cellular context, are believed to rely on the activation of defined subsets of target genes. The proper activation of p53 family members requires the coordinated action of post-translational modifications and interaction with several cofactors. In this study, we demonstrate that the multifunctional protein hDaxx interacts with p53 and its homologues, both in vitro and in vivo, and modulates their transcriptional activity. Moreover, we show that hDaxx, which has been implicated in several apoptotic pathways, increases the sensitivity to DNA damage-induced cell death and that this effect requires the presence of p53. Although hDaxx represses p53-dependent transcription of the p21 gene, it does not affect the activation of proapoptotic genes, and therefore acts by influencing the balance between cell cycle arrest and proapoptotic p53 targets. Our results therefore underline the central role of hDaxx in modulating the apoptotic threshold upon several stimuli and identify it as a possible integrating factor that coordinates the response of p53 family members

    Quercetin elevates p27Kip1 and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1

    Get PDF
    Our previous work with primary bovine fibroblasts demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 and G2/M, in correlation with p53 activation. The expression of bovine papillomavirus type 4 (BPV-4) E7 overcame this arrest and lead to the development of tumorigenic cells lines (Beniston et al., 2001). Given the possible link between papillomavirus infection, bracken fern in the diet and cancer of the upper gastrointestinal (GI) tract in humans, we investigated whether a similar situation would occur in human cells transformed by human papillomavirus type 16 (HPV-16) oncoproteins. Quercetin arrested primary human foreskin keratinocytes in G1. Arrest was linked to an elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the HPV16 E6 and E7 oncoproteins in transformed cells failed to abrogate cell cycle arrest. G1 arrest in the transformed cells was also linked to an increase of p27Kip1 with a concomitant reduction of cyclin E-associated kinase activity. This elevation of p27Kip1 was due not only to increased protein half-life, but also to increased mRNA transcription

    Author Correction: Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth

    Get PDF
    Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutation

    Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth

    Get PDF
    Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutations.Mutant p53 induces serine/glycine synthesis and essential amino acids intake. Under amino acid restriction, mutant p53 is stabilized and activates a transcriptional program that sustains a metabolic adaptive response promoting breast cancer cells growt

    Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice

    Get PDF
    Huntington's disease (HD) is a fatal, dominantly inherited, neurodegenerative disorder due to a pathological expansion of the CAG repeat in the coding region of the HTT gene. In the quest for understanding the molecular basis of neurodegeneration, we have previously demonstrated that the prolyl isomerase Pin1 plays a crucial role in mediating p53-dependent apoptosis triggered by mutant huntingtin (mHtt) in vitro. To assess the effects of the lack of Pin1 in vivo, we have bred Pin1 knock-out mice with Hdh(Q111) knock-in mice, a genetically precise model of HD. We show that Pin1 genetic ablation modifies a portion of Hdh(Q111) phenotypes in a time-dependent fashion. As an early event, Pin1 activity reduces the DNA damage response (DDR). In midlife mice, by taking advantage of next-generation sequencing technology, we show that Pin1 activity modulates a portion of the alterations triggered by mHtt, extending the role of Pin1 to two additional Hdh(Q111) phenotypes: the unbalance in the "synthesis/concentration of hormones", as well as the alteration of "Wnt/\u3b2-catenin signaling". In aging animals, Pin1 significantly increases the number of mHtt-positive nuclear inclusions while it reduces gliosis. In summary, this work provides further support for a role of Pin1 in HD pathogenesis. \ua9 2016 Agostoni, Michelazzi, Maurutto, Carnemolla, Ciani, Vatta, Roncaglia, Zucchelli, Leanza, Mantovani, Gustincich, Santoro, Piazza, Del Sal and Persichetti

    Mutant p53 as a guardian of the cancer cell

    Get PDF
    Forty years of research have established that the p53 tumor suppressor provides a major barrier to neoplastic transformation and tumor progression by its unique ability to act as an extremely sensitive collector of stress inputs, and to coordinate a complex framework of diverse effector pathways and processes that protect cellular homeostasis and genome stability. Missense mutations in the TP53 gene are extremely widespread in human cancers and give rise to mutant p53 proteins that lose tumor suppressive activities, and some of which exert trans-dominant repression over the wild-type counterpart. Cancer cells acquire selective advantages by retaining mutant forms of the protein, which radically subvert the nature of the p53 pathway by promoting invasion, metastasis and chemoresistance. In this review, we consider available evidence suggesting that mutant p53 proteins can favor cancer cell survival and tumor progression by acting as homeostatic factors that sense and protect cancer cells from transformation-related stress stimuli, including DNA lesions, oxidative and proteotoxic stress, metabolic inbalance, interaction with the tumor microenvironment, and the immune system. These activities of mutant p53 may explain cancer cell addiction to this particular oncogene, and their study may disclose tumor vulnerabilities and synthetic lethalities that could be exploited for hitting tumors bearing missense TP53 mutations
    corecore