12 research outputs found

    Editorial : automation and artificial intelligence in construction and management of civil infrastructure

    Get PDF
    The construction industry, similar to other industries, has been moving toward automation and implementation of AI tools to enhance analysis, management and decision-making. The construction industry typically takes longer than other industries in inaugurating innovation and advanced technologies due to the complex nature of the industry. Research effort is deemed necessary to understand needs and overcome challenges in terms of studying the capabilities and potential of existing tools and technologies in areas related to construction engineering and management. The current Research Topic attempted to collect relevant research work in terms of automation and AI application in constructing new assets and managing existing infrastructure. Further research is needed to standardize these processes and align research work with current needs

    Galaxy Zoo: Kinematics of strongly and weakly barred galaxies

    Get PDF
    We study the bar pattern speeds and corotation radii of 225 barred galaxies, using IFU data from MaNGA and the Tremaine-Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for R, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars (R < 1.0; 11% of our sample), fast bars (1.0 < R < 1.4; 27%) and slow bars (R > 1.4; 62%). Simulations show that R is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with {\Lambda}CDM. However, the median value of R is still lower than what is predicted by simulations.Comment: 20 pages, 16 figure

    Distinguishing Mergers and Disks in High Redshift Observations of Galaxy Kinematics

    Full text link
    The majority of massive star-forming galaxies at z∌2z\sim2 have velocity gradients suggestive of rotation, in addition to large amounts of disordered motions. In this paper, we demonstrate that it is challenging to distinguish the regular rotation of a disk galaxy from the orbital motions of merging galaxies with seeing-limited data. However, the merger fractions at z∌2z\sim2 are likely too low for this to have a large effect on measurements of disk fractions. To determine how often mergers pass for disks, we look to galaxy formation simulations. We analyze ∌\sim24000 synthetic images and kinematic maps of 31 high-resolution simulations of isolated galaxies and mergers at z∌2z\sim2. We determine if the synthetic observations pass criteria commonly used to identify disk galaxies, and whether the results are consistent with their intrinsic dynamical states. Galaxies that are intrinsically mergers pass the disk criteria for anywhere from 0 to 100%\% of sightlines. The exact percentage depends strongly on the specific disk criteria adopted, and weakly on the separation of the merging galaxies. Therefore, one cannot tell with certainty whether observations of an individual galaxy indicate a merger or a disk. To estimate the fraction of mergers passing as disks in current kinematics samples, we combine the probability that a merger will pass as a disk with theoretical merger fractions from a cosmological simulation. Taking the latter at face-value, the observed disk fractions are overestimated by small amounts: at most by 5%5\% at high stellar mass (1010−1110^{10-11} M⊙_{\odot}) and 15%15\% at low stellar mass (109−1010^{9-10} M⊙_{\odot}).Comment: 15 pages, 10 figures, accepted for publication in Ap

    Investigating the Effect of Galaxy Interactions on Star Formation at 0.5<z<3.0

    Full text link
    Observations and simulations of interacting galaxies and mergers in the local universe have shown that interactions can significantly enhance the star formation rates (SFR) and fueling of Active Galactic Nuclei (AGN). However, at higher redshift, some simulations suggest that the level of star formation enhancement induced by interactions is lower due to the higher gas fractions and already increased SFRs in these galaxies. To test this, we measure the SFR enhancement in a total of 2351 (1327) massive (M∗>1010M⊙M_*>10^{10}M_\odot) major (1<M1/M2<41<M_1/M_2<4) spectroscopic galaxy pairs at 0.5<z<3.0 with ΔV<5000\Delta V <5000 km s−1^{-1} (1000 km s−1^{-1}) and projected separation <150 kpc selected from the extensive spectroscopic coverage in the COSMOS and CANDELS fields. We find that the highest level of SFR enhancement is a factor of 1.23−0.09+0.08^{+0.08}_{-0.09} in the closest projected separation bin (<25 kpc) relative to a stellar mass-, redshift-, and environment-matched control sample of isolated galaxies. We find that the level of SFR enhancement is a factor of ∌1.5\sim1.5 higher at 0.5<z<1 than at 1<z<3 in the closest projected separation bin. Among a sample of visually identified mergers, we find an enhancement of a factor of 1.86−0.18+0.29^{+0.29}_{-0.18} for coalesced systems. For this visually identified sample, we see a clear trend of increased SFR enhancement with decreasing projected separation (2.40−0.37+0.62^{+0.62}_{-0.37} vs.\ 1.58−0.20+0.29^{+0.29}_{-0.20} for 0.5<z<1.6 and 1.6<z<3.0, respectively). The SFR enhancement seen in our interactions and mergers are all lower than the level seen in local samples at the same separation, suggesting that the level of interaction-induced star formation evolves significantly over this time period.Comment: 23 pages, 13 figures, Accepted for publication in Ap

    Investigating the Effect of Galaxy Interactions on Star Formation at 0.5 < z < 3.0

    No full text
    International audienceObservations and simulations of interacting galaxies and mergers in the local universe have shown that interactions can significantly enhance the star formation rates (SFRs) and fueling of active galactic nuclei (AGN). However, at higher redshift, some simulations suggest that the level of star formation enhancement induced by interactions is lower due to the higher gas fractions and already increased SFRs in these galaxies. To test this, we measure the SFR enhancement in a total of 2351 (1327) massive (M * > 1010 M ⊙) major (1 1/M 2 -1 (1000 km s-1) and projected separation <150 kpc selected from the extensive spectroscopic coverage in the COSMOS and CANDELS fields. We find that the highest level of SFR enhancement is a factor of 1.23−0.09+0.08{1.23}_{-0.09}^{+0.08} in the closest projected separation bin (<25 kpc) relative to a stellar mass-, redshift-, and environment-matched control sample of isolated galaxies. We find that the level of SFR enhancement is a factor of ~1.5 higher at 0.5 < z < 1 than at 1 < z < 3 in the closest projected separation bin. Among a sample of visually identified mergers, we find an enhancement of a factor of 1.86−0.18+0.29{1.86}_{-0.18}^{+0.29} (~3σ) for coalesced systems. For this visually identified sample, we see a clear trend of increased SFR enhancement with decreasing projected separation (2.40 −0.37+0.62{}_{-0.37}^{+0.62} versus 1.58−0.20+0.29{1.58}_{-0.20}^{+0.29} for 0.5 < z < 1.6 and 1.6 < z < 3.0, respectively). The SFR enhancements seen in our interactions and mergers are all lower than the level seen in local samples at the same separation, suggesting that the level of interaction-induced star formation evolves significantly over this time period

    Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations

    Get PDF
    Lyman-break galaxy (LBG) candidates at z ≳ 10 are rapidly being identified in James Webb Space Telescope (JWST)/NIRCam observations. Due to the (redshifted) break produced by neutral hydrogen absorption of rest-frame UV photons, these sources are expected to drop out in the bluer filters while being well detected in redder filters. However, here we show that dust-enshrouded star-forming galaxies at lower redshifts (z â‰Č 7) may also mimic the near-infrared (near-IR) colors of z > 10 LBGs, representing potential contaminants in LBG candidate samples. First, we analyze CEERS-DSFG-1, a NIRCam dropout undetected in the F115W and F150W filters but detected at longer wavelengths. Combining the JWST data with (sub)millimeter constraints, including deep NOEMA interferometric observations, we show that this source is a dusty star-forming galaxy (DSFG) at z ≈ 5.1. We also present a tentative 2.6σ SCUBA-2 detection at 850 ÎŒm around a recently identified z ≈ 16 LBG candidate in the same field and show that, if the emission is real and associated with this candidate, the available photometry is consistent with a z ∌ 5 dusty galaxy with strong nebular emission lines despite its blue near-IR colors. Further observations on this candidate are imperative to mitigate the low confidence of this tentative submillimeter emission and its positional uncertainty. Our analysis shows that robust (sub)millimeter detections of NIRCam dropout galaxies likely imply z ∌ 4–6 redshift solutions, where the observed near-IR break would be the result of a strong rest-frame optical Balmer break combined with high dust attenuation and strong nebular line emission, rather than the rest-frame UV Lyman break. This provides evidence that DSFGs may contaminate searches for ultra-high redshift LBG candidates from JWST observations
    corecore