274 research outputs found

    Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts

    Get PDF
    OBJECTIVE: Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS: We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+-sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS: An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION: Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649

    Role of anterior insula cortex in context-induced relapse of nicotine-seeking

    Full text link
    Tobacco use is the leading cause of preventable death worldwide, and relapse during abstinence remains the critical barrier to successful treatment of tobacco addiction. During abstinence, environmental contexts associated with nicotine use can induce craving and contribute to relapse. The insular cortex (IC) is thought to be a critical substrate of nicotine addiction and relapse. However, its specific role in context-induced relapse of nicotine-seeking is not fully known. In this study, we report a novel rodent model of context-induced relapse to nicotine-seeking after punishment-imposed abstinence, which models self-imposed abstinence through increasing negative consequences of excessive drug use. Using the neuronal activity marker Fos we find that the anterior (aIC), but not the middle or posterior IC, shows increased activity during context-induced relapse. Combining Fos with retrograde labeling of aIC inputs, we show projections to aIC from contralateral aIC and basolateral amygdala exhibit increased activity during context-induced relapse. Next, we used fiber photometry in aIC and observed phasic increases in aIC activity around nicotine-seeking responses during self-administration, punishment, and the context-induced relapse tests. Next, we used chemogenetic inhibition in both male and female rats to determine whether activity in aIC is necessary for context-induced relapse. We found that chemogenetic inhibition of aIC decreased context-induced nicotine-seeking after either punishment-or extinction-imposed abstinence. These findings highlight the critical role nicotine-associated contexts play in promoting relapse, and they show that aIC activity is critical for this context-induced relapse following both punishment and extinction-imposed abstinence

    The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer’s disease mouse model

    Get PDF
    Background: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. Methods: Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. Results: SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. Conclusion: Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression

    Conditional Knockout of NMDA Receptors in Dopamine Neurons Prevents Nicotine-Conditioned Place Preference

    Get PDF
    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction

    Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control

    Get PDF
    We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed simultaneously on a sub-millisecond timescale. Furthermore, we demonstrate an easy and flexible real-time single-shot technique for full-range (complex-conjugate cancelled) OCT imaging that is compatible with both two-dimensional as well as ultrahighresolution OCT. By implementing a dispersion imbalance between reference and sample arms of the interferometer, we eliminate the complex-conjugate signal through numerical dispersion compensation, effectively increasing the useful depth range by a factor of two. The system allows us to record 6.7 × 3.2 mm images at 5 μm depth resolution in 0.2 ms. Data postprocessing requires only 4 s. We demonstrate the capability of our system by imaging the anterior chamber of a mouse eye in vitro, as well as human skin in vivo. © 2009 Optical Society of America

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    The location of the axon initial segment affects the bandwidth of spike initiation dynamics

    Get PDF
    The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of AP recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task. Copyright
    • …
    corecore