73 research outputs found

    Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in GigaScience 5 (2016): 33, doi:10.1186/s13742-016-0138-1.Porites astreoides is a ubiquitous species of coral on modern Caribbean reefs that is resistant to increasing temperatures, overfishing, and other anthropogenic impacts that have threatened most other coral species. We assembled and annotated a transcriptome from this coral using Illumina sequences from three different developmental stages collected over several years: free-swimming larvae, newly settled larvae, and adults (>10 cm in diameter). This resource will aid understanding of coral calcification, larval settlement, and host–symbiont interactions. A de novo transcriptome for the P. astreoides holobiont (coral plus algal symbiont) was assembled using 594 Mbp of raw Illumina sequencing data generated from five age-specific cDNA libraries. The new transcriptome consists of 867 255 transcript elements with an average length of 685 bases. The isolated P. astreoides assembly consists of 129 718 transcript elements with an average length of 811 bases, and the isolated Symbiodinium sp. assembly had 186 177 transcript elements with an average length of 1105 bases. This contribution to coral transcriptome data provides a valuable resource for researchers studying the ontogeny of gene expression patterns within both the coral and its dinoflagellate symbiont.Bioinformatic analysis was performed in part on computing resources at the University of Puerto Rico (UPR) Puerto Rico Center for Environmental Neuroscience (PRCEN)’s High Performance Computing Facility, which is supported by: Institutional Development Award Networks of Biomedical Research Excellent (INBRE) grant P20GM103475 from the National Institute of General Medical Sciences, National Institutes of Health; the Institute for Functional Nanomaterials (IFN) award from the Experimental Program to Stimulate Competitive Research (EPSCoR) Track 1 program of the National Science Foundation (NSF); and EPSCoR Track 2 awards for computational nanoscience (EPS 1002410, EPS 1010094). Funding and support of the research was provided by PRCEN thanks to an NSF Centers of Research Excellent in Science and Technology (CREST) award, number HRD-1137725

    Formant analysis in dysphonic patients and automatic Arabic digit speech recognition

    Get PDF
    <p>Abstract</p> <p>Background and objective</p> <p>There has been a growing interest in objective assessment of speech in dysphonic patients for the classification of the type and severity of voice pathologies using automatic speech recognition (ASR). The aim of this work was to study the accuracy of the conventional ASR system (with Mel frequency cepstral coefficients (MFCCs) based front end and hidden Markov model (HMM) based back end) in recognizing the speech characteristics of people with pathological voice.</p> <p>Materials and methods</p> <p>The speech samples of 62 dysphonic patients with six different types of voice disorders and 50 normal subjects were analyzed. The Arabic spoken digits were taken as an input. The distribution of the first four formants of the vowel /a/ was extracted to examine deviation of the formants from normal.</p> <p>Results</p> <p>There was 100% recognition accuracy obtained for Arabic digits spoken by normal speakers. However, there was a significant loss of accuracy in the classifications while spoken by voice disordered subjects. Moreover, no significant improvement in ASR performance was achieved after assessing a subset of the individuals with disordered voices who underwent treatment.</p> <p>Conclusion</p> <p>The results of this study revealed that the current ASR technique is not a reliable tool in recognizing the speech of dysphonic patients.</p

    Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms

    Get PDF
    A voice disorder database is an essential element in doing research on automatic voice disorder detection and classification. Ethnicity affects the voice characteristics of a person, and so it is necessary to develop a database by collecting the voice samples of the targeted ethnic group. This will enhance the chances of arriving at a global solution for the accurate and reliable diagnosis of voice disorders by understanding the characteristics of a local group. Motivated by such idea, an Arabic voice pathology database (AVPD) is designed and developed in this study by recording three vowels, running speech, and isolated words. For each recorded samples, the perceptual severity is also provided which is a unique aspect of the AVPD. During the development of the AVPD, the shortcomings of different voice disorder databases were identified so that they could be avoided in the AVPD. In addition, the AVPD is evaluated by using six different types of speech features and four types of machine learning algorithms. The results of detection and classification of voice disorders obtained with the sustained vowel and the running speech are also compared with the results of an English-language disorder database, the Massachusetts Eye and Ear Infirmary (MEEI) database

    An Investigation of Multidimensional Voice Program Parameters in Three Different Databases for Voice Pathology Detection and Classification

    Get PDF
    Background and Objective Automatic voice-pathology detection and classification systems may help clinicians to detect the existence of any voice pathologies and the type of pathology from which patients suffer in the early stages. The main aim of this paper is to investigate Multidimensional Voice Program (MDVP) parameters to automatically detect and classify the voice pathologies in multiple databases, and then to find out which parameters performed well in these two processes. Materials and Methods Samples of the sustained vowel /a/ of normal and pathological voices were extracted from three different databases, which have three voice pathologies in common. The selected databases in this study represent three distinct languages: (1) the Arabic voice pathology database; (2) the Massachusetts Eye and Ear Infirmary database (English database); and (3) the Saarbruecken Voice Database (German database). A computerized speech lab program was used to extract MDVP parameters as features, and an acoustical analysis was performed. The Fisher discrimination ratio was applied to rank the parameters. A t test was performed to highlight any significant differences in the means of the normal and pathological samples. Results The experimental results demonstrate a clear difference in the performance of the MDVP parameters using these databases. The highly ranked parameters also differed from one database to another. The best accuracies were obtained by using the three highest ranked MDVP parameters arranged according to the Fisher discrimination ratio: these accuracies were 99.68%, 88.21%, and 72.53% for the Saarbruecken Voice Database, the Massachusetts Eye and Ear Infirmary database, and the Arabic voice pathology database, respectively

    Intra- and Inter-database Study for Arabic, English, and German Databases:Do Conventional Speech Features Detect Voice Pathology?

    Get PDF
    A large population around the world has voice complications. Various approaches for subjective and objective evaluations have been suggested in the literature. The subjective approach strongly depends on the experience and area of expertise of a clinician, and human error cannot be neglected. On the other hand, the objective or automatic approach is noninvasive. Automatic developed systems can provide complementary information that may be helpful for a clinician in the early screening of a voice disorder. At the same time, automatic systems can be deployed in remote areas where a general practitioner can use them and may refer the patient to a specialist to avoid complications that may be life threatening. Many automatic systems for disorder detection have been developed by applying different types of conventional speech features such as the linear prediction coefficients, linear prediction cepstral coefficients, and Mel-frequency cepstral coefficients (MFCCs). This study aims to ascertain whether conventional speech features detect voice pathology reliably, and whether they can be correlated with voice quality. To investigate this, an automatic detection system based on MFCC was developed, and three different voice disorder databases were used in this study. The experimental results suggest that the accuracy of the MFCC-based system varies from database to database. The detection rate for the intra-database ranges from 72% to 95%, and that for the inter-database is from 47% to 82%. The results conclude that conventional speech features are not correlated with voice, and hence are not reliable in pathology detection
    corecore