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Summary 

Background and Objective: Automatic voice-pathology detection and classification systems may help 

clinicians to detect the existence of any voice pathologies and the type of pathology from which patients 

suffer in the early stages. The main aim of this paper is to investigate Multidimensional Voice Program 

(MDVP) parameters to automatically detect and classify the voice pathologies in multiple databases, and 

then to find out which parameters performed well in these two processes. 

Material and Methods: Samples of the sustained vowel /a/ of normal and pathological voices were 

extracted from three different databases, which have three voice pathologies in common. The selected 

databases in this study represent three distinct languages: (1) the Arabic voice pathology database; (2) the 

Massachusetts Eye and Ear Infirmary database (English database); and (3) the Saarbruecken Voice 

Database (German database). A computerized speech lab program was used to extract MDVP parameters 

as features, and an acoustical analysis was performed. The Fisher discrimination ratio was applied to rank 

the parameters. A t test was performed to highlight any significant differences in the means of the normal 

and pathological samples. 

Results: The experimental results demonstrate a clear difference in the performance of the MDVP 

parameters using these databases. The highly ranked parameters also differed from one database to another. 

The best accuracies were obtained by using the three highest ranked MDVP parameters arranged according 

to the Fisher discrimination ratio: these accuracies were 99.68%, 88.21%, and 72.53% for the Saarbruecken 

Voice Database, the Massachusetts Eye and Ear Infirmary database, and the Arabic voice pathology 

database, respectively. 
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Introduction 

Voice pathologies affect the vocal folds, producing irregular vibrations due to the malfunctioning of many 

factors contributing to vocal vibrations. Vocal fold pathologies exhibit variations in the vibratory cycle of 

the vocal folds due to their incomplete closure. Voice disorders also affect the shape of the vocal tract 

(supra-glottal) and produce irregularities in spectral properties [1]. In addition, voice pathologies affect 

vocal-fold vibration differently depending on the type of disorder and the location of the disease in the 

vocal folds, making them produce different basic tones. 

The number of dysphonic patients has increased significantly. In the United States, approximately 7.5 

million people have vocal difficulties [2].  It has been found that 15% of all visitors to King Abdul Aziz 

University Hospital, Riyadh complain of a voice disorder [3]. The impact of voice problems on teaching 

professionals is significantly greater than for non-teaching professionals. Studies revealed that, in the 

United States, the prevalence of voice pathologies during a lifetime is 57.7% for teachers and 28.8% for 

non-teachers [4]. Approximately 33% of male and female teachers in the Riyadh area suffer from voice 

pathologies [5].  The Communication and Swallowing Disorders Unit, King Abdul Aziz University 

Hospital, examines a high volume of voice disorder cases (almost 760 cases per annum) in individuals with 

various professional and etiological backgrounds. The use of computers to detect or identify pathological 

problems in speech, a non-invasive method, is advancing over time. In the last decade, much research has 

been done on the automatic detection of vocal-fold pathologies, which continues to require further 

investigation due to the lack of standard automatic diagnostic approaches/equipment for voice pathologies. 

Detection of pathology is the first crucial step to correctly diagnose and manage voice pathologies. 

Objective assessment, including acoustical analysis, is independent of human bias and can assist clinicians 

in making decisions. We firmly believe that clinicians have the final decision regarding medical diagnosis; 

objective assessment can only be used as an assistive tool.  On the other hand, subjective measurement of 

voice quality is based on individual experience, which may vary. Automatic voice-pathology detection can 

be accomplished by various types of long-term and short-term signal analysis. Long-term parameters can 

be derived from acoustic analysis [6], [7] of speech, and short-term parameters can be calculated using 

linear predictive coefficients (LPC) [8], [9], linear predictive cepstral coefficients (LPCC) [10], Mel-

frequency cepstral coefficients (MFCC) [11], [12], and so on [42]. Different pattern-matching techniques, 

such as a Gaussian mixture model (GMM) [13], [14], hidden Markov model (HMM) [15], support vector 

machine (SVM) [16], artificial neural networks (ANN) [17], and so on  have been used to differentiate 



between disordered and normal samples. Multiple long-term acoustic features, namely, pitch, shimmer, 

jitter, APQ (amplitude perturbation quotient), PPQ (pitch perturbation quotient), HNR (harmonic-to-noise 

ratio), NNE (normalized noise energy), VTI (voice-turbulence index), SPI (soft-phonation index), FATR 

(frequency amplitude tremor), and glottal-to-noise excitation ratio (GNE) are frequently used to diagnose 

voice pathology (referenced in [14] as [2]-[12]). Furthermore, jitter and shimmer capture vocal-fold 

vibratory characteristics for both pathological and normal people, and both parameters are widely used for 

clinical research purposes [18]. Seven acoustic parameters, including shimmer and jitter, are extracted by 

means of an iterative residual-signal estimator in Rosa et al. [19], and jitter provided 54.8% accuracy of 

detection for 21 pathologies. Thirty-three different long-term acoustic parameters with their definitions, 

derived from the Multi-Dimensional Voice Program (MDVP) [31], are listed in Arjmandi et al. [20]. 

Twenty-two acoustic parameters were selected from the list extracted from voice samples in the 

Massachusetts Eye and Ear Infirmary (MEEI) database. Fifty dysphonic patients and 50 normal persons 

were used for detection. The 22 parameters were calculated for each sample and fed to six different 

classifiers to compare their accuracies. Two feature-reduction techniques were also used before applying 

classification methods. Binary classifier SVM showed the best results compared to other classifiers, with a 

recognition rate of 94.26%. In [21], MFCC and six acoustic parameters—jitter, shimmer, NHR, SPI, APQ, 

and RAP (Relative Average Perturbation)—were extracted, with the results compared to the NN-based 

voice pathology detection system [22]. Sáenz-Lechón et al. compared their proposed parameters based on 

wavelet transform with some of the MDVP parameters to discriminate between pathological and normal 

voices [23]. To ensure the reliability of the acoustic MDVP parameters, some of them were compared to 

the same parameters extracted using Praat; results showed no significant difference between the two 

computer software approaches [24]. Recently, MPEG-7 audio descriptors and multi-directional, regression-

based features have been used in voice-pathology detection, with good accuracy [26, 27]. Another recent 

study investigated the most discriminative frequency region for voice-pathology detection [28]. In general, 

MDVP parameters are well able to discriminate between normal and pathological voices, as are other tools 

that are used to extract acoustic parameters, such as WPCVox [25].  

In this paper, the well-known MDVP parameters are investigated in three different databases—(1) AVPD; 

(2) MEEI [29]; and (3) SVD [30]—to detect and classify voice pathology. MDVP parameters are commonly 

used by physicians/clinicians to assess voice pathology; however, MDVP is commercial software. The 

objective of this study is to investigate the capability of MDVP parameters to detect and classify voice 

pathologies in a cross-database scenario and to find out which of these parameters perform best in each 

individual database.  

 



Material and Methods 

Data 

In this study, we used three different databases: (1) MEEI; (2) SVD; and (3) AVPD.  We chose only three 

types of pathological voices—(1) vocal fold cyst; (2) unilateral vocal fold paralysis; and (3) vocal fold 

polyp—because only these pathologies are common in all three databases. We selected these three 

databases in our study due to the following reasons: 

• MEEI database is one of the most popular databases in the field of voice pathology. It is 

considered as the basis of many studies with voice pathology assessment; however, it has 

some limitations as mentioned in subsection of MEEI database description. Therefore, for 

comparison purpose, we used it, but we did not solely rely on it. 

• SVD is a German database that is free downloadable with rich variation of samples. This 

variation of samples makes possible to carry various type of experiments in different 

research purposes. Its use in voice pathology is very little.  

• AVPD is our Arabic developed database and this is the first time involving it in research. 

• Other used databases in many research are private and not available on the net.  

 

Voiced signals can be seen in three types as qualitatively classified by Titze in [37]. Type 1 signals 

are nearly periodic, Type 2 signals contain strong modulations or bifurcations, while Type 3 

signals are irregular and aperiodic. It has been suggested that traditional perturbation methods of 

voice signal analysis, such as jitter and shimmer, are appropriate only for Type 1 or Type 2 signals. 

For the MEEI database, some experiments are performed by excluding the Type 3 signals. 

The number of samples in each database is shown in Table 1, where the number of male and female speakers 

are shown, respectively, inside parentheses. The three used databases are each described below. 

 

 

 

 

 



Table 1: Normal and pathological samples from three different databases. 

Database Normal 

Pathological 

Cysts Paralysis Polyp Total 

AVPD 

118     

(93, 25) 

13 

(7, 6) 

32 

(16, 16) 

30 

(14, 16) 75 

MEEI 

53         

(19, 34) 

10  

(6,  4) 

66 

(34, 32) 

19 

(8, 11) 95 

SVD 

262   

(100, 162) 

6 

(1, 5) 

195 

(64, 131) 

43 

(25, 18) 244 

 

Massachusetts Eye and Ear Infirmary (MEEI) Voice Disorder Database 

This database was developed by the MEEI Voice and Speech Lab. It includes more than 1,400 voiced 

samples of sustained vowel /a/ and the first part of the Rainbow Passage. It is commercialized by Kay 

Elemetrics [29]. It was recorded in two different environments. The sampling frequency for normal samples 

was 50kHz, while that of the pathological samples was 25kHz or 50kHz. It is used in most studies of voice-

pathology detection and classification even though it has many disadvantages, such as the different 

environments and sample frequencies used to record normal and pathological voices.  In this database, 

many tools were used to evaluate voice condition, including stroboscopy, acoustic aerodynamic measures, 

and a physical examination of neck and mouth (this information is provided by Kay Elemetrics). Many 

voice pathologies can be addressed by observing changes in the muscles of the voice that can activate and 

improve the efficiency of the voice. In the CD Kay Elemetrics provided, we filtered the filenames according 

to the three diseases; if there were multiple pathologies for a file or if there were missing MDVP parameters 

for a file, we ignored that file. For normal speakers, we selected all available 53 samples. 

  

Saarbruecken Voice Database (SVD) 

The SVD is a freely downloadable database [30], recorded by the Institute of Phonetics of Saarland 

University. This database contains sustained vowels /a/, /i/, and /u/ with different intonations: normal, low, 

high, and low-high-low, along with a spoken sentence in German “Guten Morgen, wie geht es Ihnen?” 

which means, in English, “Good morning, how are you?” These attributes make it a good database for 

researchers to conduct experiments. All recorded voices in the SVD database were sampled at 50 kHz with 



16-bit resolution. This database is new; very few studies of voice-pathology detection have been done using 

it. We downloaded the files from the website mentioned in [30] using the criteria of the three diseases. We 

selected only sustained vowel /a/ samples produced at normal pitch. 

      

Arabic Voice Pathology Database (AVPD) 

The voice and speech samples in this database were collected in different sessions at the Communication 

and Swallowing Disorders Unit [4], King Abdul Aziz University Hospital, Riyadh, Saudi Arabia, by 

experienced phoniatricians in a sound-treated room using a standardized recording protocol. This database 

collection was one of the major tasks of the ongoing project funded by the National Plans for Science and 

Technology (NPST), Saudi Arabia, over the duration of two years. The protocol of the database was 

designed such that it should avoid various shortcomings of the MEEI database [23]. This database has 

recordings of sustained vowels as well as the speech of patients who have vocal-fold pathologies, along 

with the same recordings of persons with normal speech. Normal and pathological vocal folds were 

determined after clinical assessment using laryngeal stroboscopy. In case of pathology, the perceptual 

severity of voice disorders was rated on a scale of 1–3, where 3 represents the most severe case. A severity 

rating was associated with each sample based upon the consensus of a panel of three expert medical doctors. 

The recording has different types of texts: (1) three sustained vowels with onset and offset information; (2) 

isolated words including Arabic digits and some other common words; and (3) continuous speech. The 

selected text was carefully selected to cover all Arabic phonemes. All speakers recorded three utterances 

of each vowel /a/, /u/, and /i/, while isolated words and continuous speech were recorded once to avoid 

burdening patients. The sampling frequency in the database was 44 kHz, and the speech was recorded using 

the computerized speech lab (CSL) program. The voice disorders recorded in this database were evaluated 

and validated by different specialist doctors at King Abdul Aziz University Hospital. Among the recorded 

samples, only recordings of patients having vocal-fold cyst, vocal-fold polyp, and unilateral vocal-fold 

paralysis pathologies were included in this study. We selected only sustained vowel /a/ samples. We 

understand that acoustic analysis is vulnerable and there are many factors that affect its sensitivity as a 

diagnostic tool. However, in our study we tried our best to control these factor as much as possible by 

controlling the mic-mouth distance, sound-treated rooms.  

 

Methods 

A subset of the sustained vowel /a/ samples of normal and pathological voices were taken from these three 

databases. MDVP parameters for the selected samples were extracted using the Kay Pentax CSL Model 



4300 program [31]. This software is the most commonly used and cited software for acoustic analysis. It 

can perform acoustic analysis based on 33 quantitative voice parameters, including fundamental frequency, 

amplitude, spectral energy, shimmer, jitter, the presence of any sonority gap, and other features.  Indeed, 

this software has been widely used to perform this kind of analysis during the period between 1991 and 

1995, as mentioned in [34]. In our study, we used only 22 of the possible parameters, those that have 

statistical significance, while the others were ignored because they did not reflect voice quality or they were 

not produced for some voices [20].  

Many of the MDVP parameters do not correlate with the other voice assessment measures but not all of 

them. For example perturbation measures have been shown to correlate with certain voice problems that 

would affect more frequency-related parameters. That is why it could be a significant point to look for these 

parameters that may correlate much with the underling voice pathology and can give us more insight about 

its acoustic correlates. Moreover, some of the stroboscopic abnormalities can predict deviation in the 

acoustic analysis; for example aperiodicity, and asymmetry in mucosal waves of vocal folds vibration can 

predict abnormalities in perturbation measures of the acoustic analysis. This is the base on which we build 

our hypothesis that there might be certain correlation where the results of this study will prove or disprove. 

In literature, Eskenazi et al. [38] found out that the percent jitter presented a correlation of 0.55 with the 

traditional perceptual rating of breathiness. In addition, Shrivastav et al. [39] reported an improved 

correlation of 0.86 for the percent jitter parameter with ratings of breathiness. On the other hand,  Marin et 

al. [40] discovered that there is a very bad correlation between percent jitter and breathiness ratings. Other 

investigations in different studies that reported the effectiveness of HNR measures as an acoustical correlate 

of pathological voice quality [38], [40], [41]. 

 

In this study, the Fisher discriminative ratio (FDR) was used between the two classes (normal and 

pathological) for all parameters in each database individually. The purpose of using FDR is to find which 

features better detect each pathology. FDR can be calculated as shown in (1).  
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=
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µµ               (1) 

where µN and µP represent the mean for classes of normal and pathological samples, respectively, while σN 

and σP represent variances for each class, respectively, and i represents the feature index number. In the 

experiments, the features were fed to a support-vector machine classifier to make a decision about whether 

the subject was normal or pathological. Features were sorted in descending order based on FDR, and the 

top certain number of features were selected. In addition, we performed a t-test for the three highest features, 

ordered according to FDR. T-test is a statistical test that allows the comparison of means from two 

populations. We performed the t-test between two classes of normal and pathological samples on the three 



different databases separately with the following null hypothesis: “there is no significant difference between 

the two classes.” The p-value probability of the t-test contributes in making a decision about the null 

hypothesis and therefore to make ourselves more confident about our achieved accuracy of both 

classification and detection processes. If the p-value is high (greater than 0.05) then this indicates that the 

probability of the observed result is high and so we accept the null hypothesis at the 5% (0.05) significance 

level. On the other hand, if the p-value is low (less than 0.05) then this indicates that the probability of the 

observed result is low and we reject the null hypothesis. Consequently, we infer that there is a significant 

difference between two classes. 

For classification, a 10-fold, cross-validation approach was utilized, in which the data were randomly 

divided into 10 groups. For each iteration, nine groups were used in training, while the remaining group 

was used in testing. After 10 iterations of this procedure, all groups were tested. 

 

Results 

The results of the performed experiments for pathology detection and classification are expressed in terms 

of accuracy (ACC: the ratio between correctly detected samples and the total number of samples), 

sensitivity (SN: the proportion of pathological samples that are positively identified), specificity (SP: the 

proportion of normal samples that are negatively identified), and the area under the Receiver Operating 

Characteristic (ROC) curve, called AUC. All of these are shown in Table 2. These terms can be calculated 

using the following distinct equations: 
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where true negative (TN) means that the system detects a normal subject as a normal subject, true positive 

(TP) means that the system detects a pathological subject as a pathological subject, false negative (FN) 

means that the system detects a pathological subject as a normal subject, and false positive (FP) means that 

the system detects a normal subject as a pathological subject. 

To verify the validity of the selected parameters for the detection and classification process of pathological 

samples that were extracted from the three different databases, various experiments were performed. For 



example, in the case of the detection process, for each database, four different experiments were performed 

with various numbers of parameters. To ensure accuracy, every experiment was repeated ten times (10 folds 

and ten times, which equal to 100 runs), and then we reported the average. First, we selected the 22 

parameters as used and defined in [20]. We performed the experiments with the 22 individual parameters 

from these databases. After that, we sorted the parameters in descending order by FDR. We chose the top 

10 parameters by FDR and performed the experiments with these parameters. Next, we chose the three top 

parameters from each database and performed the experiments with these. To develop a general system 

independent of the databases, we chose the four most common parameters from among the top 10 

parameters in each individual database and performed the experiment with these. Table 2 shows the results 

of these experiments. The achieved accuracies varied from one database to another with the same number 

of MDVP parameters. The best achieved accuracy was 99.68% when using the top three parameters 

belonging to the SVD database. 

Table 2: Results of using different MDVP parameters from three databases (pathology detection) 

Parameters Database ACC% SN% SP% AUC 

2
2

 

AVPD 71.63 52.69 84.23 0.71 

MEEI 76.36 93.22 45.2 0.69 

SVD 72.58 62.17 82.4 0.72 

T
o

p
 -

1
0
 

AVPD 70.42 51.34 83.34 0.68 

MEEI 89.71 92.17 86.27 0.89 

SVD 68.52 51.77 84.3 0.69 

T
o

p
 -

 3
 

AVPD 72.53 49.89 86.83 0.68 

MEEI 88.21 90.63 84.83 0.88 

SVD 99.68 99.75 99.63 0.99 

4
 –

 C
o

m
m

o
n
 AVPD 71.16 43.09 88.85 0.68 

MEEI 81.71 80.52 84.97 0.82 

SVD 67.86 46.91 87.96 0.67 

 



The top three features that gave high accuracy with the SVD were vAm (peak amplitude variation period-

to-period), APQ (amplitude perturbation quotient), and PFR (phonatory fundamental frequency). vAm has 

an FDR value of 1.470, which is far greater than the FDR values of 0.538 and 0.510 for PFR and APQ,  

respectively. Figure 1 shows a scatter plot using these three parameters.  

 

 

Figure 1: Scatter plot for the three top MDVP parameters of the SVD database 

 

The scatter plot in Figure 1 shows that the vAm parameter has a better ability to discriminate pathological 

samples than the other two parameters. The top three parameters extracted from the SVD database have 

better performance than the top three parameters extracted from the AVPD and MEEI databases. Figure 2 

illustrates that the probability density functions (PDF) of normal and pathological samples using the vAm 

parameter have almost no overlap, further suggesting that it has the most capability to differentiate between 

normal and pathological voices. It is obvious that when there is more overlap between the probability 

density functions of normal and pathological samples, the ability to discriminate between normal and 

pathological sample will be reduced. 



 

Figure 2: PDF for the vAm Parameter 

Figure 3 shows the ROC curves of the top three parameters from each of the three databases. It demonstrates 

that the best performance is obtained with the features extracted from SVD. One of the reasons for this is 

that the pathological samples in the SVD database are highly severe, presenting a clear difference between 

normal and pathological samples. The 95% confidence interval is [0.9449 0.9870], and the one-tail p-value 

is zero (<0.05), describing the significance of the data in the two classes. 

 

Figure 3: ROC curves for the top three features for the three databases 

When using the four MDVP parameters in common between the three databases, accuracy decreased by 

7% in the case of MEEI while the accuracies for the other two databases, AVD and AVPD, remained almost 

unchanged (with respect to the accuracies obtained by using 10 parameters). The reason for that is that 



every database is independent of one another, and the four common parameters have different values of 

FDR for each database. The four common parameters between the three databases are Jitta, Jitt, Rap, and 

PPQ. Jitta is absolute jitter, evaluating in microseconds the period-to-period variability of pitch within an 

analyzed voice sample. Jitt evaluates the variability in percent of the pitch period within the analyzed voice 

sample. Rap, or relative average perturbation, evaluates the variability of the pitch period within the 

analyzed voice sample using a smoothing factor of three periods. Finally, PPQ, or pitch perturbation 

quotient, evaluates in percent the long-term variability of the pitch period within the analyzed voice sample 

using a smoothing factor of three periods. 

To investigate the effect of the MDVP parameters using Type 1 and Type 2 signals, we performed several 

additional experiments on the MEEI database. We analyzed the samples of the MEEI database in our study, 

and we found that most of the samples are of signal Type 1 and Type 2, and the others are of signal type 3. 

We excluded all the samples that belong to signal type 3 as listed in Table 3, and some of them are plotted 

in Figure 4 using two periods. It can be observed from the Figure 4, the signals are strongly aperiodic. We 

repeated the experiments by using 22-parameters, top 10 parameters and the three parameters to see if there 

are any significant differences of performances between the previous experiments and these new 

experiments. We found that the detection accuracy improved by 12% compared with the achieved accuracy 

in the previous experiment using 22 parameters. However, using the top 10 parameters and the top three 

parameters, the accuracies remained almost the similar, because these parameters do not include jitter and 

its variants. So we conclude that the acoustic analysis of signals of type 3 with the MDVP measurements 

have negative effect on the accuracy of the detection process, if we include 22 parameters, and we will 

analyze the rest of the samples that belong to the SVD and the AVPD databases in the future work. Table 

4 shows the achieved accuracies after we excluded the mentioned samples in Table 3. 

 

Table 3: Type 3 signal not included in the MEEI acoustic analysis 

Files Name 

CAR10AN.NSP JPP27AN.NSP 

CTY09AN.NSP JTG18AN.NSP 

DVD19AN.NSP JXS14AN.NSP 

EDG19AN.NSP MPB23AN.NSP 

EJH24AN.NSP PDO11AN.NSP 

HWR04AN.NSP RPJ15AN.NSP 

JDO14AN.NSP  

 

 



Table 4: Performance measures of the MEEI database without Type 3 samples 

Number of 

Parameters 
SN% SP% ACC% 

22-Parameters 88.909 89.214 88.692 

10-Parameters 89.138 89.497 89.538 

3 - Parameters 91.492 82.688 87.385 

 

 

Figure 4: Examples of Type 3 signals in the MEEI database. 

 

Some additional cross-database experiments were performed to make sure that the extracted MDVP 

parameters yield the same detection ability and to avoid unfairly over-fitting as a result of error estimation. 

For this, we used only the four parameters in common between the databases. First, we use one database to 

train and one to test. Then, we combined two database as trainers and used the other one as a test. The 

results of these experiments are expressed in terms of accuracy. Table 5 shows the achieved accuracies, 

which varied from one database to another. The achieved accuracies were 70.27% when using the SVD 

database for training and MEEI for testing and 70.94% when using SVD for training and AVPD for testing. 

When we combined two databases for training and used the third one for testing, accuracies were reduced. 
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Table 5: Accuracies (%) of cross-database experiments with the four common parameters for pathological detection 

Databases 
Testing 

MEEI SVD AVPD 

T
ra

in
in

g
 

MEEI - 48.22 38.89 

SVD 70.27 - 70.94 

AVPD 47.97 52.37 - 

MEEI + SVD - - 66.32 

SVD + AVPD 64.19 - - 

MEEI + AVPD - 65.81 - 

 

We performed three distinct experiments on each database with 22 features to find the validity of the 

classification using MDVP parameters for each individual database. Table 6 shows the three different 

classification experiments performed for each database. Three distinct voice pathologies were used. Two 

were used as a training set, while the third was used as a testing set. The best achieved accuracy was 97.5%, 

with the SVD database.  

Table 6: Classification for three different databases 

Classification type 

Database accuracy (%) 

AVPD SVD MEEI 

Cyst vs (Paralysis & Polyp) 82.86 97.5 88.89 

Paralysis vs (Cyst & Polyp) 57.14 79.17 65.56 

Polyp vs (Cyst & Paralysis) 60 82.08 30 

 

Moreover, cross-database experiments were performed on the voice pathology samples. Table 7 shows the 

results when two databases were used as a training set while the other was used as a testing set. These 

results show that different pathologies had distinct accuracies in various combinations of training and 

testing sets.  

 

 



Table 7: Cross-database experimental results (pathology classification) 

Classification Type 
Training       

DB 

Testing 

DB 
% Accuracy 

Cyst vs (Paralysis & Polyp) SVD+MEEI AVPD 82.67% (62/75) 

Paralysis vs (Cyst & Polyp) SVD+MEEI AVPD 57.33% (43/75)  

Polyp vs (Cyst & Paralysis) SVD+MEEI AVPD 60.00% (45/75) 

Cyst vs (Paralysis & Polyp) AVPD+MEEI SVD 97.54% (238/244) 

Paralysis vs (Cyst & Polyp) AVPD+MEEI SVD 79.92% (195/244) 

Polyp vs (Cyst & Paralysis) AVPD+MEEI SVD 82.38% (201/244)  

Cyst vs (Paralysis & Polyp) AVPD+SVD MEEI 89.47% (85/95) 

Paralysis vs (Cyst & Polyp) AVPD+SVD MEEI 30.53% (29/95) 

Polyp vs (Cyst & Paralysis) AVPD+SVD MEEI 80.00% (76/95) 

The highest achieved accuracy was 97.54% when we used the MEEI and AVPD databases as a training set 

and the SVD database as a testing set. 

t-tests were performed for the three highest-ordered features in each database to determine whether the 

differences in the means between the two classes (normal and pathological samples) were significant for 

each feature. Table 8 shows the results of this t-test for the highest-ordered three features, along with their 

p-value probability.  

Table 8: t-test for the highest-ordered three features (pathology detection case) 

Database Features Mean (N-P) sd (N-P) t-value df p-value 

AVPD 

STD 4.19 - 11.22 2.8-12 -3.76 79.17 0.00003 

Jitta 2.16 - 175.16 2.4-133.24 -9.22 74.03 0.00001 

vF0 2.24 - 6.16 1.7-6.7 -5.58 79.97 0.00001 

SVD 

PFR 2.60 - 5.53 1.23 - 4.40 -9.38 278.22 0.00001 

APQ 2.62 - 5.20 1.32 - 4.09 -9.35 289.52 0.00001 

Vam 17.74 - 21.81 9.67 - 11.14 -4.23 482.62 0.00003 

MEEI 

shim 2.21 - 8.72 0.92 - 5.29 -11.68 103.99 0.00001 

APQ 1.63 - 6.34 0.72 - 3.98 -11.23 325.72 0.00001 

sAPQ 2.64 - 7.58 1.16 - 4.61 -9.89 113.91 0.00001 

 Finally, we compared the results cross-database and performed a t-test with the 22 features to determine 

whether there are significant differences for all of the used features between the two classes (normal and 



pathology). Table 9 shows the p-values (at 95% confidence) of all 22 features taken from the three 

databases. From the listed p-values in this table, we can infer that not all MDVP parameters had significant 

differences in all type of the classification process. In addition, we can notice from this table that the 

performance of classification on SVD is better than the other two databases in all type of classification. 

Table 9: p-values for the three databases with 22 features (pathology classification case) 

M
D

V
P

 

Databases 

AVPD SVD MEEI 

Classification Type Classification Type Classification Type 

PRL vs 

ALL 

PLP vs 

ALL 

CYST vs 

ALL 

PRL vs 

ALL 

PLP vs 

ALL 

CYST vs 

ALL 

PRL vs 

ALL 

PLP vs 

ALL 

CYST vs 

ALL 

Fo 0.50 0.98 0.31 0.00 0.02 0.03 0.03 0.02 0.80 

Fhi 0.52 0.88 0.19 0.00 0.03 0.01 0.00 0.00 0.33 

Flo 0.54 0.82 0.20 0.01 0.05 0.07 0.36 0.15 0.64 

STD 0.67 0.90 0.60 0.11 0.25 0.00 0.09 0.25 0.04 

PFR 0.96 0.94 0.97 0.26 0.59 0.00 0.01 0.11 0.03 

Fftr 0.85 0.58 0.67 0.61 0.99 0.38 0.86 0.61 0.68 

Fatr 0.70 0.49 0.68 0.87 0.97 0.82 0.65 0.90 0.51 

Jita 0.36 0.93 0.11 0.20 0.44 0.00 0.19 0.47 0.14 

Jitt 0.27 0.94 0.02 0.11 0.32 0.00 0.04 0.11 0.27 

RAP 0.23 0.87 0.02 0.12 0.35 0.00 0.05 0.15 0.22 

PPQ 0.30 0.89 0.04 0.19 0.48 0.00 0.05 0.14 0.23 

sPPQ 0.60 0.66 0.86 0.90 0.70 0.01 0.35 0.44 0.75 

vFo 0.54 0.92 0.60 0.43 0.71 0.00 0.16 0.54 0.03 

Shim 0.99 0.64 0.68 0.14 0.49 0.00 0.08 0.10 0.59 

APQ 0.81 0.94 0.77 0.30 0.79 0.00 0.11 0.11 0.65 

sAPQ 1.00 0.71 0.72 0.74 0.90 0.07 0.26 0.19 0.88 

vAm 0.26 0.19 0.63 0.29 0.59 0.16 0.05 0.13 0.30 

NHR 0.98 0.93 0.93 0.96 0.77 0.00 0.15 0.54 0.10 

VTI 0.32 0.90 0.02 0.93 0.55 0.00 0.18 0.89 0.01 

SPI 0.62 0.19 0.38 0.78 0.86 0.75 0.13 0.98 0.04 

FTRI 0.62 0.95 0.39 0.54 0.31 0.00 0.59 0.22 0.74 

ATRI 0.46 0.53 0.92 0.92 1.00 0.80 0.34 0.25 0.98 

 



To compare with other methods using the MEEI and SVD databases, we provide in Table 10 some of the 

best reported accuracies found using these databases in different research studies. 

Table 10: Comparison of accuracies between methods (pathology detection) 

Methods MEEI SVD 

This paper MDVP(22) 76.36% 72.58% 

This paper MDVP(3) 88.21% 99.68% 

Method [35] - 81% 

Method [36] 74.10% - 

Method [14] 94.07% - 

 

Discussion  

We investigated the use of the MDVP parameters in three databases for voice pathology detection and 

classification. Based on the results, mentioned above, we can infer that the variation in the achieved 

accuracies from one database to another may be caused by different reasons, namely: (1) the severity of 

voice pathologies, which are not the same between the three databases, as shown, for instance, in Table 2, 

where sensitivity (to pathological samples) varies from one database to another; (2) the recording 

environment and the regulation of the recording are not the same between the three databases; (3) in the 

case of the MEEI database, the recording environments for pathological and normal samples were not the 

same; and (4) the numbers of samples taken from each database in this study are not the same. Indeed, our 

results are comparable to many previous studies that used the same parameters and one database. For 

example, with 22 parameters, the highest accuracy presented here is 76.36% with the MEEI database, which 

is comparable to Arjmandi et al. [32], who used the same database and the same classifier but different 

pathological samples. Moreover, the highest achieved accuracy with AVPD was 71.63%, which is 

comparable to the work performed using SVD in [33]. The accuracies with the two other databases, SVD 

and AVPD, are comparable (slightly less) to the accuracy obtained by MEEI. To the best of our knowledge, 

this is the first instance evaluating the MDVP parameters in these two databases, and they need more 

investigation. Using the top 10 parameters, accuracy increased by 11% with the MEEI samples, while 

remaining almost constant with SVD and AVPD. The reason for this may be that the top 10 parameters are 

not the same in all databases, and their FDR values are also different. Moreover, the selected 10 parameters 

contribute more than the rest in differentiating between normal and pathological voices.  Using the top three 

MDVP parameters dramatically increased the accuracies, especially with the samples taken from the SVD 

database. The best accuracies were 99.68%, 88.21%, and 72.53% for SVD, MEEI, and AVPD, respectively. 

In each type of experiment mentioned above, we compared how well MDVP parameters detected voice 



pathology in these databases and how much their samples contributed to discrimination between 

pathological and normal voices. Additional, cross-database experiments were performed to make sure that 

the extracted MDVP parameters from these databases produce the same ability (or not) to detect 

pathological voices and to avoid unfair over-fitting that results from error estimation. By performing cross-

database experiments, it becomes easy to see how well a system trained on one database can classify 

samples from another database. As shown in Table 5: 5 (first part), the cross-database experiments used 

one database for training and the other for testing; that table depicts increased accuracy with SVD used for 

training. In addition, three more experiments were performed, in which two databases were used for training 

and the other used for testing, as depicted in the second part of Table 5: 5. The accuracies are comparable 

among the three experiments. The diverse accuracies across the three databases indicate that we need to 

choose appropriate features for a particular setup. May be a little training of the system by voices uttered 

by a particular language will help. All MDVP parameters cannot be directly applied to all types of setups 

to assess voice pathologies.   

In general, the obtained result can be combined with auditory-perceptual evaluation techniques and 

laryngoscopic techniques to help the clinician making an accurate diagnosis, and accurate evaluation for 

voice quality. This type of analysis will help doctors to objectively tracking the progression of their patient 

and assessing their conditions.  Furthermore, acoustic analysis cannot replace the perceptual ratings but 

both perceptual and acoustic measures can be considered complementary to each other. From the obtained 

results, we can infer that not all MDVP parameters performed the same in detection and classification 

processes. For instance, the top three features mentioned before (vAm, APQ, and PFR) have the highest 

accuracy with SVD and they reflect best performance than the other features. Clinically, these three features 

could be useful for characterizing and quantifying voice properties, and possibly for differentiating between 

pathological and healthy voices. As a result, the clinician can depend on these three features in their 

diagnosis more than the other features.  

Finally, it is well known that, acoustic vocal assessment consists of a noninvasive process of obtaining 

objective measures from signal. This type of acoustic analysis can be used in clinical practice as a tool for 

monitoring surgical procedures or in speech therapy. These parameters of acoustic analysis can be assessed 

the vocal quality of patient before and after specific period of endolaryngeal phonosurgery.  

From the results of all the experiments, we find the following. 

• Training with MEEI does not make the system robust; the system is confused about whether it is 

classifying the environment or classifying normal versus pathology. 

• Training with SVD makes the system more robust than systems trained with other database, because 

SVD samples are clearly distinguishable as either normal or pathology. 



• Training with two databases offsets some of the shortcomings of training with one database. 

• One of the major current limitations is that there is no an exact correlation between the numerical 

parameters of the acoustic analysis with the auditory-perceptual aspects of voice. 

• Most of acoustic analysis studied are restricted to use only sustain vowel /a/. 

• We did not consider some factors in choosing the used samples from the three databases such as 

falsetto, or voice abuse signal type. 

• Severity of voice pathologies is not addressed in this study as well as the variability of voice 

pathologies. 

• Not all MDVP parameters show high ability to detect and classify voice pathologies. 

• Variability of the obtained accuracies for detection and classification in the three databases refers to 

the use of different recording protocols on each database and also due to the variability of voice 

disorders as well as to the severity of voice disorders. 

• CSL program provides many variation of measurements for the same features which indicate these 

variation is for commercial purposes not for acoustic analysis that can be used as useful tool to help 

clinician in their diagnosis. 

• There is a need to develop more robust features that can successfully differentiate between normal and 

pathological samples regardless of the database used. Moreover, the features should be able to classify 

pathological samples of low severity, as in the case of AVPD. 

 

From Table 6 and 7, we can conclude that the accuracies for all types of classification were almost the same 

for the SVD and AVPD in both same-database and cross-database classification, while, in the case of the 

MEEI database, the classifications greatly differed between the two types of classification. It is obvious 

from Table 8 that the p-values for the highest-ordered three features were less than the significance level, 

so we infer that there were significant differences between the two classes of normal and pathology, 

meaning that these features well differentiated between normal and pathological samples. Not all MDVP 

parameters showed significant differences between the normal and pathological samples, as shown in Table 

9.  

Conclusion 

In this work, we evaluated MDVP parameters by using three different databases—AVPD, MEEI, and 

SVD—and four different types of experiments. The detection accuracies varied from one database to 

another with the same number of MDVP parameters. The best accuracies we obtained were 99.68%, 

88.21%, and 72.53% for samples taken from SVD, MEEI, and AVPD, respectively. The obtained 



accuracies together with sensitivities in this study are very helpful to the clinicians for primary scanning to 

detect and classify the voice pathologies. For instance, some of the MDVP parameters have an excellent 

indication that they have the ability to contribute in detecting and classifying voice pathologies such as 

vAm, APQ, and PFR. We reiterate that by no means the acoustic analysis can solely be reliable to detect 

and classify voice pathologies; however, it can greatly assist the clinician to take his or her final decision. 

It would act as we stated as an adjuvant tool for the clinical assessment battery.  

In future work, we will investigate the usage of MDVP parameters to detect the severity of pathology. 

Voice-disordered patients frequently report worsening of vocal function when they are under stress and 

when they are suffering from physical fatigued. In addition, there are many factors that can lead to 

variability in voice disorders such as the location, the size, and the severity of voce disorder.  As a result, 

this variability in voice disorder lead to different results in diagnosing and we will investigate this variability 

in future work.   
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