144 research outputs found

    Hypoxia Induces Connective Tissue Growth Factor mRNA Expression

    Get PDF
    Connective tissue growth factor (CTGF) is known to be a profibrotic growth factor, which mediate the fibrotic effect of transforming growth factor-β (TGF-β) and to stimulate cell proliferation and matrix production. CTGF has been shown to be hypoxia-inducible in several cell types. Here we investigated the effect of hypoxia on CTGF gene expression in cultured mouse renal tubular cells (MTC). Quiescent cultures of MTC were exposed to hypoxia (1% O2) or normoxia in serum-free medium. The effects on hypoxia-induced CTGF expression were evaluated by Northern blot and real-time PCR. The roles of mitogen-activated protein kinase (MAPK) and TGF-β were also determined using specific biochemical inhibitors. Exposure of quiescent tubular cells to hypoxia for 24 hr in a conditioned medium resulted in a significant increase TGF-β. Hypoxia caused a significant increase in CTGF mRNA expression in MTC. Either JNK or ERK inhibitor did not block the hypoxia-induced stimulation of CTGF, whereas an inhibitor of p38 MAPK reduced the hypoxia-induced changes of CTGF. Although hypoxia stimulated TGF-β production, neutralizing anti-TGF-β1 antibody did not abolish the hypoxia-induced CTGF mRNA expression. The data suggest that hypoxia up-regulates CTGF gene expression, and that p38 MAPK plays a role in hypoxic-stimulation of CTGF. We also demonstrated that hypoxia induces CTGF mRNA expression via a TGF-β1-independent mechanism

    Chronic VEGF Blockade Worsens Glomerular Injury in the Remnant Kidney Model

    Get PDF
    VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present

    Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism

    Get PDF
    Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic intervention against tuberculosis

    Rapid Nongenomic Action of Aldosterone on Protein Expressions of Hsp90(α and β) and pc-Src in Rat Kidney

    Get PDF
    Previous in vitro studies indicated that aldosterone nongenomically phosphorylates epidermal growth factor receptor (EGFR) through activation of upstream signals, heat shock protein 90β (Hsp90β), and cytosolic (c)-Src kinase. We demonstrated that aldosterone rapidly elevates EGFR phosphorylation in rat kidney. There are no in vivo data regarding renal Hsp90(α and β) and phosphorylated (p)c-Src protein expressions. The present study further investigates the expressions of these proteins. Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (Aldo: 150 μg/kg BW). After 30 minutes, abundances and localizations of these proteins were determined. Aldosterone enhanced renal Hsp90β protein abundance (P<0.001), but Hsp90α and pc-Src protein levels remained unaltered. Expression of Hsp90(α and β) was induced prominently in the proximal convoluted tubules (PCTs). Activation of Hsp90α was observed in vascular and outer medulla regions, whereas Hsp90β was induced in the cortex. Immunoreactivity of pc-Src was elevated in PCT with obvious staining at the luminal membrane. This in vivo study is the first to demonstrate that aldosterone nongenomically elevates Hsp90(α and β) protein expressions in rat kidney. Aldosterone had no effect on pc-Src protein levels but modulated localization. These results indicate that aldosterone regulates upstream mediators of EGFR transactivation in vivo
    • …
    corecore