12 research outputs found

    Data set for transcriptome analysis of Escherichia coli exposed to nickel

    Get PDF
    AbstractNi is recognized as an element that is toxic to humans, acting as an allergen and a carcinogenic agent, and it is also toxic to plants. The toxicity of Ni has been understudied in microorganisms. The data presented here were obtained by submitting the model bacterium Escherichia coli K-12 to nickel stress. To identify expressed genes, RNA-Seq was performed. Bacteria were exposed to 50”M NiCl2 during 10min. Exposure to Ni lead to the deregulation of 57% of the E. coli transcripts. Further analysis using DAVID identified most affected biological pathways. The list of differentially expressed genes and physiological consequences of Ni stress are described in “Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12” (M. Gault, G. Effantin, A. Rodrigue, 2016) [1]

    L’homĂ©ostasie des mĂ©taux chez la bactĂ©rie Escherichia coli : de l’analyse gĂ©nĂ©rale d’un stress sur l’expression des gĂšnes, Ă  la comprĂ©hension des mĂ©canismes molĂ©culaires

    No full text
    Metals are necessary components of all living cells because they are constitutive of many essential proteins. Nickel, for example, is required for hydrogenase activity, which is essential for the energetic metabolism. However, metals become toxic when present in excess. Prokaryotes can overcome this toxicity by using several systems of resistance or adaptation. Import systems must be repressed whereas export pathways activated. This work consists in bringing out the principal strategies established by Escherichia coli for accommodating a stress caused by an excess of Ni ions. In order to understand the cellular response, the effect of nickel stress has been evaluated in E. coli by a transcriptomic approach coupled to functional validation. Excess Ni induces the biosynthesis of the efflux system RcnRAB. In addition to the RcnA efflux pump, this system contains a periplasmic protein called RcnB. This protein modulates Ni and Co traffic. RcnB displayed no Ni or Co binding capacity but was shown to bing Cu ions. RcnB was characterized as a new family of cupro-protein. We showed that RcnB is not involved in the control of Cu homeostasis but that Cu binding is essential for its Ni and Co efflux function. Our results suggest connections between different systems of metals homeostasis. Indeed, RNA-Seq data analysis revealed that exposure to Ni induces strong variations of the expression of genes involved in Cu and Fe homeostasis. Our results correlated with an increase of intracellular Cu and Fe pools as assayed by plasma spectrometry. Both metals are involved in reactive oxygen species (ROS) production and generate serious cell damages, targeting DNA for example. We showed that Ni ions do not trigger DNA breakage and are not mutagenic. On the other hand, Ni stress has a strong effect on DNA folding. We propose that excess Ni causes DNA relaxation by the indirect induction of oxidative stress. Furthermore, we identified the first transport system specific for Ni ions localized in the outer membrane. This system, composed of YddA and YddB, allows the transfer of Ni ions accross the two membranes. The genes encoding these proteins are expressed in conditions evocative of a biofilm lifestyle. Moreover, this work showed that Ni stress promotes biofilm growth instead of a planktonic one. Indeed, in the presence of an excess of Ni ions, genes encoding flagella are down regulated whereas genes encoding adherence structures are up regulated. To conclude, an excess of Ni ions affects specific metals import and efflux systems unbalancing intracellular Fe and Cu contents. These metals in turn generate ROS that are toxic for the bacterial cells. Ni stress induces large transcriptomic modifications causing major physiological changes important for the survival of the bacteria.Les mĂ©taux sont indispensables Ă  la vie cellulaire car ils sont constitutifs des protĂ©ines. Les ions Ni, font partie intĂ©grante des hydrogĂ©nases, enzymes primordiales pour le mĂ©tabolisme Ă©nergĂ©tique. Paradoxalement, en excĂšs, les mĂ©taux deviennent toxiques pour la cellule. Les bactĂ©ries luttent contre cette toxicitĂ© en produisant des systĂšmes de rĂ©sistance ou d’adaptation. Les cellules procaryotes peuvent Ă©quilibrer les teneurs en mĂ©taux en contrĂŽlant leur entrĂ©e ou leur efflux grĂące Ă  la biogenĂšse de transporteurs spĂ©cifiques. L’objectif de ces travaux de thĂšse a consistĂ© Ă  comprendre les mĂ©canismes principaux permettant Ă  la bactĂ©rie modĂšle Escherichia coli de s’adapter Ă  de fortes variations en ions mĂ©talliques, en prenant comme modĂšle un stress provoquĂ© par un excĂšs d’ions Ni. Afin d’apprĂ©hender l’ensemble de la rĂ©ponse cellulaire, l’effet de ce stress a Ă©tĂ© Ă©valuĂ© sur l’expression de l’ensemble des gĂšnes d’E. coli par des approches de transcriptomique couplĂ©es Ă  une validation fonctionnelle. L’excĂšs d’ions Ni induit le systĂšme d’efflux RcnRAB. En plus de la pompe d’efflux RcnA, ce systĂšme comporte une protĂ©ine pĂ©riplasmique, RcnB, qui module le trafic des ions Ni ou Co via RcnA. Ces travaux ont montrĂ© que RcnB n’interagit pas avec les ions Ni ou Co mais de façon inattendue avec les ions Cu, dĂ©finissant une nouvelle classe de cupro-protĂ©ines. Nous montrons que si RcnB n’intervient pas dans le contrĂŽle de l’homĂ©ostasie du Cu, l’interaction avec ces ions est essentielle Ă  sa fonction dans la modulation de l’efflux des ions Ni et Co. Ces rĂ©sultats suggĂšrent des connexions entre les diffĂ©rents systĂšmes de maintien des homĂ©ostasies mĂ©talliques. Les rĂ©sultats d’analyse transcriptomique montrent une forte modulation de l’expression des gĂšnes impliquĂ©s dans les homĂ©ostasies du Cu et du Fe en prĂ©sence d’un excĂšs d’ions Ni, corrĂ©lĂ©e Ă  une augmentation cellulaire de leur teneur mesurĂ©e par spectromĂ©trie plasma. Ces mĂ©taux sont responsables de la production d’espĂšces rĂ©actives oxygĂ©nĂ©es entraĂźnant de sĂ©rieux dĂ©gĂąts cellulaires, une des cibles privilĂ©giĂ©e Ă©tant l’ADN. Nous montrons que les ions Ni ne provoquent pas de cassures de l’ADN et n’ont pas d’effet mutagĂšne, par contre ils provoquent une modification importante de l’état de repliement de l’ADN. Nous proposons que ce relĂąchement de l’ADN soit dĂ» Ă  l’induction indirecte d’un stress oxydant. Ces travaux ont aboutis Ă  l’identification du premier systĂšme de transport spĂ©cifique des ions Ni Ă  travers la membrane externe chez E. coli. En rĂ©sumĂ©, un excĂšs d’ions Ni affecte les systĂšmes spĂ©cifiques d’entrĂ©e et d’efflux des ions mĂ©talliques troublant les teneurs intracellulaires des autres mĂ©taux comme le Cu et le Fe. Ces mĂ©taux sont en partie responsables de la production de ROS lĂ©taux pour les cellules bactĂ©riennes. L’excĂšs de Ni va induire une profonde reprogrammation gĂ©nĂ©tique entraĂźnant des changements physiologiques multifactoriels importants pour la survie bactĂ©rienne dans ces conditions de stress

    Metal homeostasis in the bacterium E. coli : from the transcriptomic analysis of a stress, to the understanding of the molecular mechanisms

    No full text
    Les mĂ©taux sont indispensables Ă  la vie cellulaire car ils sont constitutifs des protĂ©ines. Les ions Ni, font partie intĂ©grante des hydrogĂ©nases, enzymes primordiales pour le mĂ©tabolisme Ă©nergĂ©tique. Paradoxalement, en excĂšs, les mĂ©taux deviennent toxiques pour la cellule. Les bactĂ©ries luttent contre cette toxicitĂ© en produisant des systĂšmes de rĂ©sistance ou d’adaptation. Les cellules procaryotes peuvent Ă©quilibrer les teneurs en mĂ©taux en contrĂŽlant leur entrĂ©e ou leur efflux grĂące Ă  la biogenĂšse de transporteurs spĂ©cifiques. L’objectif de ces travaux de thĂšse a consistĂ© Ă  comprendre les mĂ©canismes principaux permettant Ă  la bactĂ©rie modĂšle Escherichia coli de s’adapter Ă  de fortes variations en ions mĂ©talliques, en prenant comme modĂšle un stress provoquĂ© par un excĂšs d’ions Ni. Afin d’apprĂ©hender l’ensemble de la rĂ©ponse cellulaire, l’effet de ce stress a Ă©tĂ© Ă©valuĂ© sur l’expression de l’ensemble des gĂšnes d’E. coli par des approches de transcriptomique couplĂ©es Ă  une validation fonctionnelle. L’excĂšs d’ions Ni induit le systĂšme d’efflux RcnRAB. En plus de la pompe d’efflux RcnA, ce systĂšme comporte une protĂ©ine pĂ©riplasmique, RcnB, qui module le trafic des ions Ni ou Co via RcnA. Ces travaux ont montrĂ© que RcnB n’interagit pas avec les ions Ni ou Co mais de façon inattendue avec les ions Cu, dĂ©finissant une nouvelle classe de cupro-protĂ©ines. Nous montrons que si RcnB n’intervient pas dans le contrĂŽle de l’homĂ©ostasie du Cu, l’interaction avec ces ions est essentielle Ă  sa fonction dans la modulation de l’efflux des ions Ni et Co. Ces rĂ©sultats suggĂšrent des connexions entre les diffĂ©rents systĂšmes de maintien des homĂ©ostasies mĂ©talliques. Les rĂ©sultats d’analyse transcriptomique montrent une forte modulation de l’expression des gĂšnes impliquĂ©s dans les homĂ©ostasies du Cu et du Fe en prĂ©sence d’un excĂšs d’ions Ni, corrĂ©lĂ©e Ă  une augmentation cellulaire de leur teneur mesurĂ©e par spectromĂ©trie plasma. Ces mĂ©taux sont responsables de la production d’espĂšces rĂ©actives oxygĂ©nĂ©es entraĂźnant de sĂ©rieux dĂ©gĂąts cellulaires, une des cibles privilĂ©giĂ©e Ă©tant l’ADN. Nous montrons que les ions Ni ne provoquent pas de cassures de l’ADN et n’ont pas d’effet mutagĂšne, par contre ils provoquent une modification importante de l’état de repliement de l’ADN. Nous proposons que ce relĂąchement de l’ADN soit dĂ» Ă  l’induction indirecte d’un stress oxydant. Ces travaux ont aboutis Ă  l’identification du premier systĂšme de transport spĂ©cifique des ions Ni Ă  travers la membrane externe chez E. coli. En rĂ©sumĂ©, un excĂšs d’ions Ni affecte les systĂšmes spĂ©cifiques d’entrĂ©e et d’efflux des ions mĂ©talliques troublant les teneurs intracellulaires des autres mĂ©taux comme le Cu et le Fe. Ces mĂ©taux sont en partie responsables de la production de ROS lĂ©taux pour les cellules bactĂ©riennes. L’excĂšs de Ni va induire une profonde reprogrammation gĂ©nĂ©tique entraĂźnant des changements physiologiques multifactoriels importants pour la survie bactĂ©rienne dans ces conditions de stress.Metals are necessary components of all living cells because they are constitutive of many essential proteins. Nickel, for example, is required for hydrogenase activity, which is essential for the energetic metabolism. However, metals become toxic when present in excess. Prokaryotes can overcome this toxicity by using several systems of resistance or adaptation. Import systems must be repressed whereas export pathways activated. This work consists in bringing out the principal strategies established by Escherichia coli for accommodating a stress caused by an excess of Ni ions. In order to understand the cellular response, the effect of nickel stress has been evaluated in E. coli by a transcriptomic approach coupled to functional validation. Excess Ni induces the biosynthesis of the efflux system RcnRAB. In addition to the RcnA efflux pump, this system contains a periplasmic protein called RcnB. This protein modulates Ni and Co traffic. RcnB displayed no Ni or Co binding capacity but was shown to bing Cu ions. RcnB was characterized as a new family of cupro-protein. We showed that RcnB is not involved in the control of Cu homeostasis but that Cu binding is essential for its Ni and Co efflux function. Our results suggest connections between different systems of metals homeostasis. Indeed, RNA-Seq data analysis revealed that exposure to Ni induces strong variations of the expression of genes involved in Cu and Fe homeostasis. Our results correlated with an increase of intracellular Cu and Fe pools as assayed by plasma spectrometry. Both metals are involved in reactive oxygen species (ROS) production and generate serious cell damages, targeting DNA for example. We showed that Ni ions do not trigger DNA breakage and are not mutagenic. On the other hand, Ni stress has a strong effect on DNA folding. We propose that excess Ni causes DNA relaxation by the indirect induction of oxidative stress. Furthermore, we identified the first transport system specific for Ni ions localized in the outer membrane. This system, composed of YddA and YddB, allows the transfer of Ni ions accross the two membranes. The genes encoding these proteins are expressed in conditions evocative of a biofilm lifestyle. Moreover, this work showed that Ni stress promotes biofilm growth instead of a planktonic one. Indeed, in the presence of an excess of Ni ions, genes encoding flagella are down regulated whereas genes encoding adherence structures are up regulated. To conclude, an excess of Ni ions affects specific metals import and efflux systems unbalancing intracellular Fe and Cu contents. These metals in turn generate ROS that are toxic for the bacterial cells. Ni stress induces large transcriptomic modifications causing major physiological changes important for the survival of the bacteria

    L’homĂ©ostasie des mĂ©taux chez la bactĂ©rie Escherichia coli : de l’analyse gĂ©nĂ©rale d’un stress sur l’expression des gĂšnes, Ă  la comprĂ©hension des mĂ©canismes molĂ©culaires

    No full text
    Metals are necessary components of all living cells because they are constitutive of many essential proteins. Nickel, for example, is required for hydrogenase activity, which is essential for the energetic metabolism. However, metals become toxic when present in excess. Prokaryotes can overcome this toxicity by using several systems of resistance or adaptation. Import systems must be repressed whereas export pathways activated. This work consists in bringing out the principal strategies established by Escherichia coli for accommodating a stress caused by an excess of Ni ions. In order to understand the cellular response, the effect of nickel stress has been evaluated in E. coli by a transcriptomic approach coupled to functional validation. Excess Ni induces the biosynthesis of the efflux system RcnRAB. In addition to the RcnA efflux pump, this system contains a periplasmic protein called RcnB. This protein modulates Ni and Co traffic. RcnB displayed no Ni or Co binding capacity but was shown to bing Cu ions. RcnB was characterized as a new family of cupro-protein. We showed that RcnB is not involved in the control of Cu homeostasis but that Cu binding is essential for its Ni and Co efflux function. Our results suggest connections between different systems of metals homeostasis. Indeed, RNA-Seq data analysis revealed that exposure to Ni induces strong variations of the expression of genes involved in Cu and Fe homeostasis. Our results correlated with an increase of intracellular Cu and Fe pools as assayed by plasma spectrometry. Both metals are involved in reactive oxygen species (ROS) production and generate serious cell damages, targeting DNA for example. We showed that Ni ions do not trigger DNA breakage and are not mutagenic. On the other hand, Ni stress has a strong effect on DNA folding. We propose that excess Ni causes DNA relaxation by the indirect induction of oxidative stress. Furthermore, we identified the first transport system specific for Ni ions localized in the outer membrane. This system, composed of YddA and YddB, allows the transfer of Ni ions accross the two membranes. The genes encoding these proteins are expressed in conditions evocative of a biofilm lifestyle. Moreover, this work showed that Ni stress promotes biofilm growth instead of a planktonic one. Indeed, in the presence of an excess of Ni ions, genes encoding flagella are down regulated whereas genes encoding adherence structures are up regulated. To conclude, an excess of Ni ions affects specific metals import and efflux systems unbalancing intracellular Fe and Cu contents. These metals in turn generate ROS that are toxic for the bacterial cells. Ni stress induces large transcriptomic modifications causing major physiological changes important for the survival of the bacteria.Les mĂ©taux sont indispensables Ă  la vie cellulaire car ils sont constitutifs des protĂ©ines. Les ions Ni, font partie intĂ©grante des hydrogĂ©nases, enzymes primordiales pour le mĂ©tabolisme Ă©nergĂ©tique. Paradoxalement, en excĂšs, les mĂ©taux deviennent toxiques pour la cellule. Les bactĂ©ries luttent contre cette toxicitĂ© en produisant des systĂšmes de rĂ©sistance ou d’adaptation. Les cellules procaryotes peuvent Ă©quilibrer les teneurs en mĂ©taux en contrĂŽlant leur entrĂ©e ou leur efflux grĂące Ă  la biogenĂšse de transporteurs spĂ©cifiques. L’objectif de ces travaux de thĂšse a consistĂ© Ă  comprendre les mĂ©canismes principaux permettant Ă  la bactĂ©rie modĂšle Escherichia coli de s’adapter Ă  de fortes variations en ions mĂ©talliques, en prenant comme modĂšle un stress provoquĂ© par un excĂšs d’ions Ni. Afin d’apprĂ©hender l’ensemble de la rĂ©ponse cellulaire, l’effet de ce stress a Ă©tĂ© Ă©valuĂ© sur l’expression de l’ensemble des gĂšnes d’E. coli par des approches de transcriptomique couplĂ©es Ă  une validation fonctionnelle. L’excĂšs d’ions Ni induit le systĂšme d’efflux RcnRAB. En plus de la pompe d’efflux RcnA, ce systĂšme comporte une protĂ©ine pĂ©riplasmique, RcnB, qui module le trafic des ions Ni ou Co via RcnA. Ces travaux ont montrĂ© que RcnB n’interagit pas avec les ions Ni ou Co mais de façon inattendue avec les ions Cu, dĂ©finissant une nouvelle classe de cupro-protĂ©ines. Nous montrons que si RcnB n’intervient pas dans le contrĂŽle de l’homĂ©ostasie du Cu, l’interaction avec ces ions est essentielle Ă  sa fonction dans la modulation de l’efflux des ions Ni et Co. Ces rĂ©sultats suggĂšrent des connexions entre les diffĂ©rents systĂšmes de maintien des homĂ©ostasies mĂ©talliques. Les rĂ©sultats d’analyse transcriptomique montrent une forte modulation de l’expression des gĂšnes impliquĂ©s dans les homĂ©ostasies du Cu et du Fe en prĂ©sence d’un excĂšs d’ions Ni, corrĂ©lĂ©e Ă  une augmentation cellulaire de leur teneur mesurĂ©e par spectromĂ©trie plasma. Ces mĂ©taux sont responsables de la production d’espĂšces rĂ©actives oxygĂ©nĂ©es entraĂźnant de sĂ©rieux dĂ©gĂąts cellulaires, une des cibles privilĂ©giĂ©e Ă©tant l’ADN. Nous montrons que les ions Ni ne provoquent pas de cassures de l’ADN et n’ont pas d’effet mutagĂšne, par contre ils provoquent une modification importante de l’état de repliement de l’ADN. Nous proposons que ce relĂąchement de l’ADN soit dĂ» Ă  l’induction indirecte d’un stress oxydant. Ces travaux ont aboutis Ă  l’identification du premier systĂšme de transport spĂ©cifique des ions Ni Ă  travers la membrane externe chez E. coli. En rĂ©sumĂ©, un excĂšs d’ions Ni affecte les systĂšmes spĂ©cifiques d’entrĂ©e et d’efflux des ions mĂ©talliques troublant les teneurs intracellulaires des autres mĂ©taux comme le Cu et le Fe. Ces mĂ©taux sont en partie responsables de la production de ROS lĂ©taux pour les cellules bactĂ©riennes. L’excĂšs de Ni va induire une profonde reprogrammation gĂ©nĂ©tique entraĂźnant des changements physiologiques multifactoriels importants pour la survie bactĂ©rienne dans ces conditions de stress

    Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage

    No full text
    International audienceMany studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products

    Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage

    No full text
    Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products

    Comparative inhibitory effect of prenylated coumarins, ferulenol and ferprenin, contained in the 'poisonous chemotype' of Ferula communis on mammal liver microsomal VKORC1 activity.

    No full text
    International audienceTwo distinguishable chemotypes of Ferula communis have been described: the 'nonpoisonous' chemotype, containing as main constituents the daucane esters; and the 'poisonous' chemotype containing prenylated coumarins, such as ferulenol and ferprenin. Ferulenol and ferprenin are 4-oxygenated molecules such as dicoumarol and warfarin, the first developed antivitamin K molecules. Antivitamin K molecules specifically inhibit VKORC1, an enzyme essential for recycling vitamin K. This latest is involved in the activation of clotting factors II, VII, IX, X. The inhibiting effect of ferulenol on VKORC1 was shown in rat, but not for species exposed to F. communis while in vivo studies suggest differences between animal susceptibility to ferulenol. The inhibiting effect of ferprenin on VKORC1 was never demonstrated. The aim of this study was to compare the inhibiting effect of both compounds on VKORC1 of different species exposed to F. communis. Vitamin K epoxide activity was evaluated for each species from liver microsomes and inhibiting effect of ferulenol and ferprenin was characterized. Ferulenol and ferprenin were shown to be able to inhibit VKORC1 from all analyzed species. Nevertheless, susceptibility to ferulenol and ferprenin presented differences between species, suggesting a different susceptibility to 'poisonous' chemotypes of F. communis

    An Inflamed and Infected Reconstructed Human Epidermis to Study Atopic Dermatitis and Skin Care Ingredients

    No full text
    Atopic dermatitis (AD), the most common inflammatory skin disorder, is a multifactorial disease characterized by a genetic predisposition, epidermal barrier disruption, a strong T helper (Th) type 2 immune reaction to environmental antigens and an altered cutaneous microbiome. Microbial dysbiosis characterized by the prevalence of Staphylococcus aureus (S. aureus) has been shown to exacerbate AD. In recent years, in vitro models of AD have been developed, but none of them reproduce all of the pathophysiological features. To better mimic AD, we developed reconstructed human epidermis (RHE) exposed to a Th2 pro-inflammatory cytokine cocktail and S. aureus. This model well reproduced some of the vicious loops involved in AD, with alterations at the physical, microbial and immune levels. Our results strongly suggest that S. aureus acquired a higher virulence potential when the epidermis was challenged with inflammatory cytokines, thus later contributing to the chronic inflammatory status. Furthermore, a topical application of a Castanea sativa extract was shown to prevent the apparition of the AD-like phenotype. It increased filaggrin, claudin-1 and loricrin expressions and controlled S. aureus by impairing its biofilm formation, enzymatic activities and inflammatory potential
    corecore