7 research outputs found

    Base out visual training and proximal convergence

    Get PDF
    Base out visual training and proximal convergenc

    Maternal and paternal genomes differentially affect myofibre characteristics and muscle weights of bovine fetuses at midgestation

    Get PDF
    Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80–96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82–89% and 56–93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5–6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.Ruidong Xiang, Mani Ghanipoor-Samami, William H. Johns, Tanja Eindorf, David L. Rutley, Zbigniew A. Kruk, Carolyn J. Fitzsimmons, Dana A. Thomsen, Claire T. Roberts, Brian M. Burns, Gail I. Anderson, Paul L. Greenwood, Stefan Hiendlede

    Postural Control Differences between Patients with Posterior Tibial Tendon Dysfunction and Healthy People during Gait

    Get PDF
    Background: Patients with posterior tibial tendon dysfunction (PTTD) may exhibit postural instability during walking likely due to a loss of medial longitudinal arch, abnormal foot alignment, and pain. While many studies have investigated gait alterations in PTTD, there is no understanding of dynamic postural control mechanisms in this population during gait, which will help guide rehabilitation and gait training programs for patients with PTTD. The purpose of the study was to assess dynamic postural control mechanisms in patients with stage II PTTD as compared to age and gender matched healthy controls. Methods: Eleven patients with stage II PTTD (4 males and 7 females; age 59 ± 1 years; height 1.66 ± 0.12 m; mass 84.2 ± 16.0 kg) and ten gender and age matched controls were recruited in this study. Participants were asked to walk along a 10 m walkway. Ten Vicon cameras and four AMTI force platforms were used to collect kinematic and center of pressure (COP) data while participants performed gait. To test differences between PTTD vs. control groups, independent t-tests (set at α < 0.05) were performed. Results: Patients with PTTD had significantly higher double stance ratio (+23%) and anterior-posterior (AP) time to contact (TTC) percentage (+16%) as compared to healthy control. However, PTTD had lower AP COP excursion (−19%), AP COP velocity (−30%), and medial-lateral (ML) COP velocity (−40%) as compared to healthy controls. Mean ML COP trace values for PTTD were significantly decreased (−23%) as compared to controls, indicating COP trace for PTTD tends to be closer to the medial boundary than controls during single-support phase of walking. Conclusion: PTTD patients showed more conservative and cautious postural strategies which may help maintain balance and reduce the need for postural adjustment during PTTD gait. They also showed more medially shifted COP patterns than healthy controls during single-support phase of walking. Dynamic postural control outcomes could be used to develop effective gait training programs aimed at alleviating a medial shift of COP (everted foot) for individuals with PTTD in order to improve their functionality and gait efficiency. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Postural Control Differences Between Patients with Posterior Tibial Tendon Dysfunction and Healthy People During Gait

    Get PDF
    Background: Patients with posterior tibial tendon dysfunction (PTTD) may exhibit postural instability during walking likely due to a loss of medial longitudinal arch, abnormal foot alignment, and pain. While many studies have investigated gait alterations in PTTD, there is no understanding of dynamic postural control mechanisms in this population during gait, which will help guide rehabilitation and gait training programs for patients with PTTD. The purpose of the study was to assess dynamic postural control mechanisms in patients with stage II PTTD as compared to age and gender matched healthy controls. Methods: Eleven patients with stage II PTTD (4 males and 7 females; age 59 ± 1 years; height 1.66 ± 0.12 m; mass 84.2 ± 16.0 kg) and ten gender and age matched controls were recruited in this study. Participants were asked to walk along a 10 m walkway. Ten Vicon cameras and four AMTI force platforms were used to collect kinematic and center of pressure (COP) data while participants performed gait. To test differences between PTTD vs. control groups, independent t-tests (set at α \u3c 0.05) were performed. Results: Patients with PTTD had significantly higher double stance ratio (+23%) and anterior-posterior (AP) time to contact (TTC) percentage (+16%) as compared to healthy control. However, PTTD had lower AP COP excursion (−19%), AP COP velocity (−30%), and medial-lateral (ML) COP velocity (−40%) as compared to healthy controls. Mean ML COP trace values for PTTD were significantly decreased (−23%) as compared to controls, indicating COP trace for PTTD tends to be closer to the medial boundary than controls during single-support phase of walking. Conclusion: PTTD patients showed more conservative and cautious postural strategies which may help maintain balance and reduce the need for postural adjustment during PTTD gait. They also showed more medially shifted COP patterns than healthy controls during single-support phase of walking. Dynamic postural control outcomes could be used to develop effective gait training programs aimed at alleviating a medial shift of COP (everted foot) for individuals with PTTD in order to improve their functionality and gait efficiency

    A Complete Mitochondrial Genome Sequence from a Mesolithic Wild Aurochs (Bos primigenius)

    Get PDF
    Background The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. Methodology DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738±68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. Conclusions For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified aurochsen haplogroup (haplogroup P), thus providing novel insights into pre-domestic patterns of variation. The high proportion of authentic, endogenous aurochs DNA preserved in this sample bodes well for future efforts to determine the complete genome sequence of a wild ancestor of domestic cattle
    corecore