Base out visual training and proximal convergence

Mark J. Bannon
Pacific University
Daniel L. Mannen
Pacific University

Recommended Citation

Bannon, Mark J. and Mannen, Daniel L., "Base out visual training and proximal convergence" (1980). College of Optometry. 563.
https://commons.pacificu.edu/opt/563

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

Base out visual training and proximal convergence

Abstract
Base out visual training and proximal convergence
\section*{Degree Type}
Thesis
\section*{Degree Name}
Master of Science in Vision Science
Committee Chair
Richard D. Septon
\section*{Subject Categories}
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

PACIFIC UNIVERSITY COLLEGE OF OPTOMETRY
\rightarrow BASE OUT VISUAL TRAINING AND PROXIMAL CONVERGENCE,

A THESIS, PRESENTED TO
 THE FACULTY OF THE COLLEGE OF OPTOMETRY
 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
 FOR THE DEGREE OF DOCTOR OF OPTOMETRY

by
MARK J. BANNON
DANIEL, L. MANNER

ADVISOR: RICHARD D. SETON, OD.

Accepted by the Faculty of the College of

 Optometry, Pacific University, in partial fulfillment of the requirements for the Doctor of Optometry degree.

ACKNOWLEDGEMENT

The authors wish to express their sincere appreciation to Dr. Richard Septon, the thesis advisor, for his encouragement, advice and assistance.

M.J.B.
D.I.M.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. METHODS 4
III. RESULTS 12
IV. DISCUSSION 45
V. REFERENCES 48

IIST OF TABLES

Table Page

1. Base Out To Blur Out Summary 13-14
2. Base In To Blur Out Summary $15-16$
3. Phoria Summary 18-19
4a. Base Out PC/D Ratios, Accommodative Stim- 22
ulus $=0$
4b. Base Out PC/D Ratios, Accommodative Stim- 22ulus $=1.0$
5a. Base In PC/D Ratios, Accommodative Stim- 23
ulus $=0$
5b. Base In PC/D Ratios, Accommodative Stim- 23 ulus $=1.0$
6a. Phoria PC/D Ratios, Accommodative Stim- 24
ulus = 0
6b. Phoria PC/D Ratios, Accommodative Stim- 24
ulus $=1.0$
Figure Page
1a. Base Out and Base In To Blur Out, Average 17Of All Subjects. Pretraining
lb. Base Out and Base In To Blur Out, Average 17Of All Subjects. Post Training
2a. Phoria, Average Of All Subjects 20
Pretraining
2b. Phoria, Average Of All Subjects 20 Post Training
3a. Proximal Convergence/ Nearness Ratios 266 m to .50 m Base Out
3b. Proximal Convergence/ Nearness Ratios 26 6m to .33 m Base Out
4a. Proximal Convergence/ Nearness Ratios 27
6 m to. 50 m Base In
4b. Proximal Convergence/ Nearness Ratios 276 m to .33 m Base In
5a. Proximal Convergence/ Nearness Ratios 28
6 m to .50 m Phoria
5b. Proximal Convergence/ Nearness Ratios 28 6 m to .33 m Phoria
6a. Gradient AC/A Plot, Average of All Sub- 29 jects, .50 m test distance
6b. Gradient AC/A Plot, Average of All Sub- 29
jects, .33 m test distance
7a. Subject 1, Base Out and Base In To Blur 31 Out, Pretraining
7b. Subject l, Base out and Base In To Blur 31 Out, Post Training
7c. Subject l, Phorias, Pretraining 32
7d. Subject l, Phorias, Post Training 32
8a. Subject 2. Base Out and Base In To Blur 33 out, Pretraining
8b. Subject 2, Base Out and Base In To Blur 33 Out, Post Training
8c. Subject 2, Phorias, Pretraining 34
8d. Subject 2, Phorias, Post Training 34
9a. Subject 3, Base Out and Base In To Blur 35
Out, Pretraining
9b. Subject 3, Base Out and Base In To Blur 35 Out, Post Training
9c. Subject 3, Phorias, Pretraining 36
9d. Subject 3, Phorias, Post Training 36
10a. Subject 4, Base Out and Base In To Blur 37
Out, Pretraining
10b. Subject 4, Base Out and Base In To Blur 37Out, Post Training
loc. Subject 4, Phorias, Pretraining 38
10d. Subject 4, Phorias, Post Training 38
lla. Subject 5, Base Out and Base In To Blur 39Out, Pretraining
llb. Subject 5, Base Out and Base In To Blur 39 Out, Post Training
llc. Subject 5, Phorias, Pretraining 40
lld. Subject 5, Phorias, Post Training 40
12a. Subject 6, Base Out and Base In To Blur 41 Out, Pretraining
12b. Subject 6, Base Out and Base In To Blur 41Out, Post Training
12c. Subject 6, Phorias, Pretraining 42
12d. Subject 6, Phorias, Post Training 42
13a. Subject ?, Base Out and Base In To Blur 43
Out, Pretraining
13b. Subject 7, Base Out and Base In To Blur 43 Out, Post Training
13c. Subject 7, Phorias, Pretraining 44
13d. Subject 7, Phorias, Post Training 44

Proximal convergence, variously referred to as "directional complement and psychic complement" ${ }^{1}$ has been investigated by several persons. Maddox ${ }^{2}$ originally identified proximal convergence assuming it to be a reflex part of accommodative convergence. Fry^{3} described proximal convergence as a separate convergence reflex which is stimulated by the awareness of nearness. He listed tonic convergence. accommodative convergence, fusional convergence, and proximal convergence as being the four components of convergence. Morgan ${ }^{4}$ postulated that proximal convergence was a learned part of fusional convergence which with time may become a conditioned response to any near target. Hofstetter ${ }^{5}$ found a positive correlation between positive fusional convergence and proximal effects and stated that proximal convergence may actually be the facilitator of positive fusional convergence. He further stated that individuals having little accommodative convergence are likely to have greater proximal convergence. Alpern ${ }^{6}$ found marked individual differences in the change in phoria with test distance when accommodation was held constant. He reported evidence for positive, negative, and zero proximal convergence. Ogle ${ }^{7}$ reported that factors other than accommodative convergence affect the fusionfree convergence when test objects are viewed at various distances. These factors are not present
when test distance is held constant and these have been termed psychic awareness of near. Ogle also found that in 16% of the cases, a negative proximal effect was present, which he attributed to faulty distance localization. Neumueller ${ }^{8}$ noted that knowledge of spatial proximity gives rise to proximal convergence and therefore, makes stereoscope phoria measurements invalid. Ittleson and Ames ${ }^{9}$ studied the effects of apparent distance by changing target size. They found that convergence shifted in the direction of the apparent distance. Morgan ${ }^{10}$ also suggested that in individuals having small proximal effects, it may be harder to train base out ranges. Knoll ${ }^{11}$ proposed that individuals demonstrating negative proximal effects may be poor cases for base out training and good cases for base in training. Flom ${ }^{12}$ suggested that changes in the $A C / A$ ratio with orthoptics are genuine and not due to proximal convergence, however, no specific calculations of proximal convergence were provided to substantiate that conclusion.

Base out visual training can be prescribed with the intention of increasing the positive fusional reserve of an individual until it is sufficient to meet the demands of exophoria. 13 "This form of training is usuelly a very effective method of treating convergence insufficiency.... and often requires only a small number of training sessions to increase the base out zone sufficiently enough to solve the patient's problem."14 It has been suggested by Morgan ${ }^{15}$
that proximal convergence is a learned function and not simply a reflex. If proximal convergence is learned, it should also be affected by vision training. Therefore, it is possible that when base out is trained, what one may actually be training is a person's awareness of nearness. It is the intent of this research to measure the effects of base out vision training on proximal convergence and to determine it's role in the fusional convergence scheme.

Subjects. Ten subjects were selected from a population of students ranging in age from 20-26. Those having visual acuities of less than $20 / 20$ each eye and those with ocular motility problems precluding single binocular vision were excluded from the study. Subject 3 exhibited restricted base out ranges and was symptomatic. Subjects 1, 2, and 7 also demonstrated low base out ranges under some conditions but were asymptomatic. All other subjects exhibited adequate base out ranges prior to training. All subjects exhibited adequate base in ranges. Nine of ten subjects exhibited an $A C / A$ of between $2 / 1$ and $4 / 1$. However, subject 3 exhibited an $A C / A$ of less than $1 / 1$.

Test Conditions. The following tests and procedures were used during both pre and post training examinations. 1. Interpupillary distances: Far and near pds were taken using the standard pd rule technique. The far pd measurement was used for all 6 m tests and the near pd for all near test distances.
2. Illuminations For distance testing, an sllumination of 10 to 15 footcandles was used. For near testing, a near point light was used in addition to the 10 to 15 footcandle room illumination.
3. Equipment: The equipment consisted of an AO Ultramatic phoropter with Risley rotary prisms and an $A O$ projector.
4. Targets: A vertical row of Snellen acuity letters subtending 5 minutes of arc at 6 m was used at the 6 m test distance. Vertical rows of Snellen acuity letters subteming 4 minutes of arc at .50 m , 5 minutes of arc at .40 m , and 6.1 minutes of are at .33 m were used at their respective test distances.
5. Control lenses: The 7A lens, or maximum plus to best visual acuity, was used as the basic starting lens for all test conditions. The 6 m phoria and prism vergences were taken through the 7A lens and the 7A - 1.00D lens. The .50 m phorias and prism vergences were taken through +2.00 D over 7A, +1.50 D over 7A, +1.00D over 7A, and 7A. The .40 m phorias and prism vergences were taken through 7A. The .33 m phorias and prism vergences were taken through +3.00 D over 7A, +2.00 D over 7A, +1.00 D over 7A, and 7A. All lens values were placed in the phoropter lens banks.
6. Phoric conditions: Heterophorias were taken using the vertical rows of letters at $6 \mathrm{~m}, .50 \mathrm{~m}, .40 \mathrm{~m}$, and .33 m test distances. Dissociation was accomplished by 15 prism diopters base in $O D$ and 6 prism diopters base up OS. Five findings were taken under each test condition and the mean was calculated for use in statistical analysis. One test consisted of the average of BI to alignment and BO to alignment. To preclude phoria drift over time, binocular vision was restored for a
period of 10 seconds after each measurement.

7 . Phoria instructions:

1. After dissociation, the question was asked, "How many rows of letters are there?" (two)
2. "Is the top row of letters to the right or the left of the bottom row? ${ }^{*}$ (right)
3. "If the top row of letters is moved to the left, will the targets pass by each other or will they hit?" (If necessary, the vertical prism was increased so that the targets would not hit.)
4. "I am going to move the lines relative to each other Keep the letters in the bottom clear and say now when the top line is directly above the bottom Ine."
5. The procedure was repeated in the opposite direction and the two findings, averaged together, constituted one measurement.
6. Between each phoria measurement, binocular viewing was restored for ten seconds.
7. Measurements were taken for a total of 5 trials for each test condition.
8. Prism vergence conditions: Base in and base out prism vergences were taken at $6 \mathrm{~m}, .50 \mathrm{~m}, .40 \mathrm{~m}$, and .33 m test distances through various control lenses. At 6 m , prism vergences were taken through 7A and 7A - 1,00D. At .50 m , prism vergences were taken through $42,00 \mathrm{D}$ over 7A, +1.50 D over $7 \mathrm{~A},+1.00 \mathrm{D}$ over 7 A , and 7A. At
.40 m, prism vergences were taken through 7A. At .33 m , prism vergences were taken through +3.00 D over 7A, +2.00D over 7A, +1.00D over 7A, and 7A. At each test distance, the subject was instructed to report blur out, break, and recovery. Binocular vision was restored between findings as was done with phoria testing.
9. Prism vergence instructions: Instructions were given as follows:
10. "How many rows of letters are there?" (one)
11. "I am going to change the lenses and cause that row of letters to change. The letters may blur out (letters no longer readable but still seen singly), break (line of letters now seen as two), or return to one."
12. "It is important that you try to keep the letters single and clear as long as possible and that you you return to single and clear as soon as possible."
13. "If the letters blur out, say "blur out", if the letters break into two, say "two", and if the line returns to one, say "one"."
14. Between each prism vergence measurement, binocular viewing was restored for ten seconds.
15. Measurements were taken for a total of 5 trials.

10. Testing sequenoes

1. \#8, far point lateral phoria through 7A
2. far point lateral phoria through 7A - 1.00D
3. \#11, far point prism vergence base in through 7A and 7A - 1.00 D
4. \#9 and \#10, far point prism vergence base out through 7 A and $7 \mathrm{a}-1.00 \mathrm{D}$
5. \#13B, near point phoria at 40 cm through 7A
6. \#17A/B, near point base in prism vergence at 40 cm through 7A
7. \#16A/B, near point base out prism vergence at 40 cm through 7A
8. lateral phoria at .50 m with +2.00 D over 7A
9. lateral phoria at .50 m with +1.50 D over 7 A
10. lateral phoria at .50 m with +1.00 D over 7 A
11. lateral phoria at .50 m with 7A
12. lateral phoria at .33 m with +3.00 D over 7A
13. lateral phoria at .33 m with +2.00 D over 7A
14. lateral phoria at .33 m with +1.00 D over 7A
15. lateral phoria at .33 m with. 7 A
16. prism vergences $B I / B O$ at .50 m with +2.00 D over 7A
17. prism vergences $B I / B 0$ at .50 m with +1.50 D over 7 A
18. prism vergences $\mathrm{BI} / \mathrm{BO}$ at .50 m with +1.00 D over 7A
19. prism vergences $B I / B O$ at .50 m with 7 A
20. prism vergences $B I / B O$ at .33 m with +3.00 D over 7 A
21. prism vergences $B I / B O$ at .33 m with +2.00 D over 7 A
22. prism vergences $B I / B O$ at .33 m with +1.00 D over 7 A
23. prism vergences $B I / B O$ at .33 m with 7A

For each test condition, base in testing was done prior to base out testing. Plus adds were used in order of decreasing value, thereby, increasing the accommodative demand with each plus add reduction. Therefore, both convergence and accommodation were inhibited prior to stimulation at each test distance.
11. Base out visual training was instituted for a four week period of time. Patients were seen weekly for thirty minutes per visit and home training of 30 minutes per day was assigned. Various training techniques were used including rotoscope, loose prisms, eccentric rings, three dot cards, vectograms, pencil pushups, Vodnoy aperture rule, and Brock string. In all training conditions, the patient was instructed to keep the letters clear to control accommodation. At the end of four weeks of training, the above testing sequence was repeated so that the effects of the training could be determined. Identical testing sequences and procedures were used for both pre and post training conditions. All post training data was taken without reference to pretraining data so as to eliminate examiner bias.
12. Data Corrections:

1. Because convergence stimulus is dependent on the interpupillary distance, all findings were corrected for the various pds. The following equation was used to determine the actual convergence stimulus ${ }^{16}$,

$$
C_{s}=\frac{\mathrm{Pd}}{d+.027 \mathrm{~m}}
$$

in which, $C_{s}=$ convergence stimulus in prism diopters

> Pd = interpupillary distance (far)
$\mathrm{d}=$ distance from spectacle plane to the center of rotation
2. Because all lens values were presented in the phoropter lens banks and all patients had different refractive errors and because prisms have a 1.0 prism effectivity only at 6 m , it was necessary to correct all findings for prism effectivity. The following equation was used to determine the proper prism effectivity ${ }^{17}$,

Prism effectivity = t
$(1-.027 \mathrm{D})(\mathrm{t}+\mathrm{s})+.027$
in which, $t=$ distance from object to the spectacle plane in meters $D=$ horizontal lens power at spectacle plane $\mathrm{s}=.03 \mathrm{~m}$ distance of prism from spectacle plane
3. It should be noted that break findings were used in data analysis whenever blur out responses were not reported by the subjects.
13. Proximal convergence was computed using phoria, base out and base in data. The following equation was used to compute proximal convergence ${ }^{18}$,
Proximal convergence $=$ Conv. response far - Conv. response near
reciprocal of the near distance
when the accommodative stimulus is made equal for bothfar and near distances.

Ten subjects began this project and seven successfully completed it. Figures $1-4$ represent the average findings of all subjects who completed the project. Figures 5-13 and Tables 1-6 represent individual subject findings. All tables and figures represent corrected findings as previously described. On all tables and figures, pretraining data is shown as PRE and post training as POST.

Tables 1 and 2 show individual pretraining and post training base out and base in to blur out findings taken at three distances through various lens adds. Each entry is the average of five measurements, corrected for prism effectivity and lens power induced errors. The average pretraining and post training base out and base in to blur out findings for all subjects are found in Figure 1 as derived from Tables 1 and 2. It is apparent that the base out training program was successful in extending the base out prism vergence ranges of the subjects in this study. The greatest increase in the base out range occurred at the 6 m distance, followed by the .50 m , and .33 m distances, respectively. It is also seen that the base in prism vergence ranges showed a slight increase following the training program.

Table 3 shows individual pretraining and post training

TABLE I. BASE OUT TO BLUR OUT SUMMARY IN PRISM DIOPTRRS at 6 m through 7A \quad at 6 m through 7A - 1.00

TABLE 1. continued

TABLE 2. BASE IN TO BLUR OUT SUMMARY IN PRISM DIOFTERS

subject

TABLE 2. continued

FIGURE La. BASE AUT AND BASE IN TO BLUR OUT, AVERAGE OF ALL SUBJECTS. PRETRAINING

figure lb. base out and base in to blur out, average of all SUBJECTS. POST TRAINING

TABLE 3. PHORIA SUMMARY IN PRISM DIOPTERS $\begin{aligned} & (-=\text { exo) } \\ & (+=\text { eso })\end{aligned}$
at 6 m through 7A PRE POST
Subject

1.	-2.2	+1.2
2.	-3.0	-1.9
3.	-0.8	-1.5
4.	-1.9	-1.3
5.	-0.8	-0.1
6.	+4.2	+3.0
7.	+1.5	+0.6
Average	-0.3	0.0
	at. 50 m	through 7A
	PRE	POST

Subject

1.	-2.4	+0.2
2.	-0.5	+1.2
3.	-1.8	+0.1
4.	-3.0	-1.8
5.	-2.9	-2.6
6.	+2.6	+5.0
7.	-0.1	-2.7
Average	-1.2	-0.6
	at .50 m	through
	PA +1.50	
	PRE	POST

Subject

1.	-3.4	-4.8
2.	-2.3	-1.9
3.	-1.7	-1.3
4.	-6.1	-3.0
5.	-4.8	-4.8
6.	-0.8	+1.4
7.	$\underline{-3.2}$	-6.6
Average	-3.2	-3.0

at 6 m through 7A -1.00 PRE POST

+0.8	+4.0
-2.2	-0.9

$-1.3 \quad-0.1$
$+0.4 \quad+0.7$
$-0.6 \quad-0.1$
$+6.6 \quad+5.8$
$+2.3 \quad+0.8$
$+0.8+1.4$
at .50 m through 7A +1.00 PRE POST

-6.0	-3.2
-1.8	-1.1
-2.0	-0.7
-4.4	-3.0
-4.0	-4.7
+0.8	+3.4
-2.1	-5.4
-2.8	-2.1
50 m through	$7 \mathrm{~A}+2.00$
PRE	POST

-6.4	-7.2
-3.6	-3.0
-3.2	-3.1
-6.2	-3.4
-6.5	-4.2
-0.4	+0.7
-4.6	-7.9
-4.4	-4.0

TABLE 3. continued

FIGURE 2a. PHORIA, AVERAGE OF ALL SUBJECTS. PRETRAINING

FIGURE 2b. PHORIA, AVERAGE OF ALL SUBJECTS. POST TRAINING
phoria findinfe taken at three distances through various lens adds. Each entry is the average of five measurements, corrected for prism effectivity and lens power induced errors. Figure 2 represents average pretraining and post training phoria findings for all subjects at three distances through various lens adds. It can be seen that on the average, either no change or a slight increase in esophoria occurred following training.

Proximal convergence/nearness ratio (PC/D) is calculated by determining the change in convergence response between two distances while keeping the stimulus to accommodation constant. This change in convergence response is then divided by the 'nearness' as expressed in diopters, D, which is the reciprocal of the testing distance in meters. When the accommodative stimulus, A_{s}, is equal to zero, plus lenses must be added to the distance correction, equal to the reciprocal of the near test distance. When A_{s} is equal to 1.0 , a -1.00 D lens is added to the distance correction at 6 m and plus lenses must be added to the distance correction at the near test distance, equal to 1.OD less than the reciprocal of the near distance. In each of the above cases, A_{s} must remain constant for both far and near distances.

Tables 4, 5, and 6 represent pretraining and post training proximal convergence/ nearness ratios (PC/D) as calculated with base out, base in, or phoria data. The

TABLE 4a. BASE OUT PROXIMAL CONVERGENCE/ NEARNESS RATIOS (Δ / D)

6 m to .50 m			6 m to .33 m	
	BRE	post	PRE	POST
Subject				
1.	4.1	3.5	5.8	3.7
2.	8.6	10.0	6.6	9.4
3.	6.4	3.0	4.9	3.2
4.	4.4	0.1	6.0	2.6
5.	9.0	2.5	5.9	3.3
6.	6.0	3.2	6.1	4.8
7.	4.4	4.5	4.1	4.9
Average	6.1	3.8	5.6	4.5
Accommodative stimulus $=0$				

TABLE 4b. BASE OUT PROXIMAL CONVERGEINCE/ NEARNESS RATIOS (Δ / D)

	6 m to .50 m		6 m to .33 m	
	P.RE	POST	PRE	Post
Subject				
1.	1.4	1.6	4.5	3.1
2.	6.3	4.3	6.2	6.3
3.	6.1	0.3	6.6	1.0
4.	5.4	4.0	6.5	2.0
5.	8.0	4.2	5.3	3.1
6.	3.8	1.1	4.7	2.5
7.	4.6	2.4	4.7	4.0
Average	5.1	2.6	5.5	3.1

Accommodative stimulus $=1.0$

TABLE 5a. BASE IN PROXIMAL CONVERGENCE/ NEARNESS RATIOS (Δ / D)

6 m to .50 m			6 m to .33 m	
	PRE	POST	PRE	POST
Subject				
1.	3.6	4.8	3.6	3.1
2.	4.9	3.9	3.3	3.0
3.	5.2	2.8	3.5	1.9
4.	4.2	3.0	4.2	1.8
5.	3.2	4.1	2.3	2.4
6.	1.8	2.2	1.9	1.5
7.	4.3	3.1	2.3	2.0
Average	3.9	3.4	3.0	2.2

TABLE 5b. BASE IN PROXIAL CONVERGENCE/ NEARNESS RATIOS (Δ / D)

	PRE	POST	PRE	POST
Subject				
1.	4.8	3.0	5.1	2.9
2.	4.4	3.6	3.5	3.9
3.	4.2	1.8	2.6	2.0
4.	3.5	2.1	2.4	2.3
5.	2.8	1.5	2.8	2.1
6.	2.9	1.7	3.6	2.5
7.	2.8	1.7	1.5	2.0
Average	3.6	2.2	3.1	2.5

TABLE 6a. PHORIA PROXIMAL CONVERGENCE/ NEARNESS RATIOS (Δ / D)

	6 m to .50 m		6 m to .33 m	
	PRE	POST	PRE	POST
Subject				
1.	3.9	1.8	2.9	1.8
2.	5.7	5.4	5.9	5.1
3.	4.8	5.2	4.9	5.3
4.	3.8	4.9	3.3	3.6
5.	3.2	4.0	3.5	3.1
6.	3.7	4.8	2.6	3.1
7.	3.0	1.8	2.9	2.6
Average	4.0	4.0	3.7	3.5

Accommodative stimulus $=0$

TABLE 6b. PHORIA PROXIMAL CONVERGENCE/ NEARNESS RATIOS (Δ / D)

6 m to . 50 m			6 m to .33 m	
	PRE	POST	PRE	POST
Subject				
1.	2.6	2.4	3.5	1.9
2.	6.2	5.9	6.0	5.6
3.	5.8	5.7	5.4	5.0
4.	3.6	4.2	3.5	3.4
5.	4.3	3.7	4.3	3.2
6.	3.1	4.8	3.0	3.1
7.	3.8	2.9	3.4	3.0
Average	4.2	4.2	4.2	3.6

individual PC/Ds were calculated using appropriate findings from Tables 1, 2, and 3, as previously described. Average PC/Ds for all subjects were also calculated and appear in the respective tables. Group average $\mathrm{PC} / \mathrm{Ds}$ from Tables 4, 5, and 6 are shown in Figures 3, 4, and 5. PC/Ds decreased in all cases except for the 6 m to .50 m phorias where it remained constant. The largest decrease in PC / D was found when computed with base out to blur out data, followed by base in and phoria data, respectively.

The average gradient $A C / A$ of all subjects at both .50 m and .33 m test distances, pre and post training, is demonstrated in Figure 6. Average base out, base in, and phoria data from Tables 1, 2, and 3 make up each point in Figure 6. The very similar slopes between pre and post training plots indicates no change in the gradient $A C / A$. A slight esoward movement is seen in the .50 m phoria line and a slight exoward movement is seen in the .33 m phoria line, but with no change in slope. The dramatic increase in the base out limit and small increase in the base in limit are also apparent.

Individual subject base out, base in, and phoria data are presented in Figures 7-13. The individual plots are unremarkable from the average plots of all subjects.

To identify whether depth of focus differences might influence the computations, $P C / D$ was calculated using both $A_{S}=0$ and $A_{S}=1$. An accommodative stimulus of 1.0

FIGURE 3a. AVERAGE OF ALL SUBJECTS BASE OUT FROXIVAL CONVERGENCE/NEARNESS RATIOS, 6 m to .50 m .

FIGURE 3b. AVERAGE OF ALI SUBJECTS BASE OUT FROXIMAL CONVERGENCE/NEARNESS RATIOS, 6 m to .33 m .

FIGURE 4a. AVERAGE OF ALL SUBJECTS BASE IN PROXIMAI, CONVERGENCE/NEARNESS RATIOS, 6 m to .50 m .

FIGURE 4b. AVERAGE OF ALL SUBJECTS BASE IN PROXIMAL CONVERGENCE/ NEARNESS RATIOS, 6 m to .33 m .

FIGURE 5a. PHORIA PROXIMAL CONVERGENCE/ NEARNESS RATIOS, 6 m to .50 m .

FIGURE 5b. PHORIA PROXIMAL CONVERGENCE/ NEARNESS RATIOS, 6 m to .33 m .

FIGURE 6a. GRADIENT AC/A, AVERAGE OF ALL SUBJECISS AT. 50 m TEST DISTANCE. BASE IN $=B I$, PHORIA $=P, B A S E$ OUT $=$ BO IN THE ABOVE FIGURE.

FIGURE 6b. GRADIENT AC/A, AVERAGE OF ALL SUBJECTS AT .33 m TEST DISTANCE. BASE IN $=B I, \operatorname{PHORIA}=P, B A S E$ OUT $=$ BO IN THE ABOVE FIGURE.
exceeds the depth of focus normally found operating at the extremes of the base out and base in limits. Therefore, if the depth of focus is having an effect, a difference should be found between $A_{s}=0$ and $A_{s}=1 \mathrm{PC} / \mathrm{Ds}$. We expected no contamination, of course, when comparing $A_{s}=0$ PC/Ds pre and post training, since the same focus effect would be present in both testing sessions. Curiously, though, $A_{S}=0$ and $A_{S}=1 \mathrm{PC} / \mathrm{Ds}$ were identical.

The .40 m data was taken but is not presented due to the advantage of using a larger stimulus interval. . 50 m to .33 m .

Raw data, subject release forms, training schedules, and training instructions are found in APPENDIX 1.

FIGURE 7a. SUBJECT 1. BASE OUT AND BASE IN TO BLUR OUT.
PRETRAINING

FIGURE 7b. SUBJECT 1. BASE OUT AND BASE IN TO BIUR OUT. POST TRAINING

FIGURE 7c. SUBJECT 1, PHORIAS PRE TRAINING

FIGURE 7d. SUBJECT 1, PHORIAS POST TRAINING

FIGURE 8a. SUBJECT 2, BASE OUT AND BASE IN PRTSM VERGENCES PRETRAINING

FIGURE 8b. SUBJECT 2, BASE OUT AND BASE IN PRISM VERGENCES POST TRAINING

FIGURE 8c. SUBJECT 2, PHORIAS PRE TRAINING

FIGURE 8d. SUBJECT 2, PHORIAS POST TRAINING

FIGURE 9a. SUBJECT 3, BASE OUT AND BASE IN PRISM VERGENCES PRETRAINING

FIGURE 9b. SUBJECT 3, BASE OUT AND BASE IN PRISM VERGENGCES POST TRAINING

FIGURE 9c. SUBJECT 3, PHORIAS PRE TRAINING

FIGURE 9d. SUBJECT 3: PHORIAS POST TRAINING

FIGURE 10a. SUBJECT 4, BASE OUT AND BASE IN PRISM VERGENCES PRE TRAINING

FIGURE 10b. SUBJECT 4, BASE OUT AND BASE IN PRISM VERGENCES POST TRAINING

FIGURE 10c. SUBJECT 4, PHORIAS PRE TRAINING

FIGURE 10d. SUBJECT 4, PHORIAS POST TRAINING;

FIGURE 1Ia. SUBJECT 5, BASE OUT AND BASE IN PRISM VERGENCES PRE TRAINING

FIGURE IIb. SUBJECT 5, BASE OUT AND BASE IN PRISM VERGENCES POST TRAINING

FIGURE 1lc. SUBJECT 5, PHORIAS PRE TRAINING

FIGURE 11d. SUBJECT 5, PHORIAS POST TRAINING

FIGURE 12a. SUBJECT 6, BASE OUT AND BASE IN PRISM VERGENCES
PRE TRAINING

FIGURE 12b. SUBJECT 6, BASE OUT AND BASE IN PRISM VERGENCES POST TRAINING

FIGURE 12c. SUBJECT 6, PHORIAS PRE TRAINING

FIGURE 12d. SUBJECT 6, PHORIAS POST TRAINING

FIGURE 13a. SUBJEGT 7, BASE OUT AND BASE IN PRISM VERGENCES PRE TRAINING

FIGURE 13b. SUBJECT 7, BASE OUT AND BASE IN PRISM VERGENCES POST TRAINING

FIGURE 13c. SUBJECT 7, PHORIAS PRE TRAINING

FIGURE 13d. SUBJECT 7, PHORIAS POST TRAINING

Data have been presented for a study in which proximal convergence/ nearness (PC/D) ratios were determined, both before and after base out visual training. Base out, base in, and phoria data taken at several test distances with various lens adds were used to calculate $P C / D$ ratios.

It is clear that the base out vision training program was successful in expanding the limits of the base out prism vergence ranges. Unexpectedly, a slight increase in the base in zone resulted following training. We do not feel that the widened base in zone is due to base out training, but rather due to a training effect which probably occurred during the testing sequence. A very small eso shift in the phoria line also occurred with training.

The data clearly shows that proximal convergence ratios did not increase with base out vision training, but in fact, decreased slightly. The dramatic increases in the base out zones cannot be attributed to proximal convergence increases. Likewise, although a slight increase in tonic convergence occurred, the change is insignificant when compared to the large change in the base out limit. A constant gradient AC/A between pre and post training conditions implies no change in accommodative convergence. Therefore, the increases found in the base out prism vergence ranges must be attributed
to actual increases in positive fusional convergence. Also, it is clear that proximal convergence is a separate, identifiable component of convergence as suggested by Fry. 19 All subjects in this study exhibited positive proximal effects, present even at the base in limit. As expected, PC/D was largest when computed with base out data, followed by phoria, and base in data. This was true both before and after training, even though the PC/D was found to decrease with base out vision training. Hofstetter ${ }^{20}$ has suggested that proximal convergence may be the facilitator of positive fusional convergence. It was found in our study that PC/D decreased when positive fusional convergence increased. This suggests to us that proximal convergence may actually function as a reserve to make up for deficiencies in positive fusional convergence. As the positive fusional convergence range increased, the need for proximal convergence was lessened, hence, its reduction. For any given individual, a stronger positive fusional convergence range may imply less need for proximal convergence. Both Alpern ${ }^{21}$ and Ogle ${ }^{22}$ have suggested the existance of positive, negative, and zero proximal convergence responders. In this study, all subjects were positive proximal convergence responders. Possible further study might involve seeking out negative and zero proximal convergence responders to determine training prognosis for base out training.

Flom ${ }^{23}$ has stated that changes which occur in the AC/A with orthoptics are real changes and not due to changes in $P C / D$. The findings in this study agree with Flom's contention that orthoptic improvements are not due to changes in $P C / D$. In fact, $P C / D$ was found to decrease with base out training while positive fusional convergence increased. In this study, no appreciable change occurred in the $A C / A$ with training.

In summary, it was found that proximal convergence/ nearness ratios decreased with increases in positive fusional convergence. This provides strong evidence that proximal convergence may serve as a reserve for any deficiencies in positive fusional convergence. Further, it was demonstrated that proximal convergence is an identifiable component of convergence, separate from all others. It was also found that the gradient $A C / A$ did not change with vision training. Finally, it was demenstrated that the increases in base out prism vergence which occurred with training are primarily due to actual increases in positive fusional convergence.

1. Hofstetter, H.W., "The Proximal Factor In Accommodation and Convergence", American Journal of Optometry and Archives of American Academy of Optometry, 19 (1942) 67-76.
2. Naddox, E.E., Clinical Use of Lenses and The Decentering Lenses, 2nd ed., (Bristol: John Wright \& Co., 1893.)
3. Fry, G.A.'"Fundamental Variables In The Relationship Between Accommodation and Convergence", Optometric Weekly, March 18, 1943, 25.
4. Morgan M. Jr., "A Comparison of Clinical Methods of Measuring Accommodative Convergence", American Journal of optometry and Archives of American Academy of optometry, 27, (1950), 385-396.
5. Hofstetter, H.W., "The Relationship Of Proximal Convergence To Fusional and Accommodative Convergence", American Journal of Optometry and Archives of American Acsdemy of optometry, 28, (1951), 300-308.
6. Alpern, M., "Testing Distance Effect On Phoria Measurement At Various Accommodative Levels," A.M.A. Archives of ophthalmology, 54 (1955), 906-915.
7. Ogle, K., Martens, T., Dyer, J., Oculomotor Imbalance In Binocular Vision and Fixation Disparity, (Philadelphia: Lea \& Febiger, 1967, 131, 138.
8. Neumueller, J., "Proximal Convergence and Accommodation", American Journal of Optometry and Archives of American Academy of Optometry, 19 (1942), 16-25.
9. Ittleson, W., and Ames, A. Jr., "Accommodation, Convergence, and Their Relation To Apparent Distance", Journal of Psychology, 30 (1950), 393-394.
10. Morgan M. Jr., "A Comparison Of Clinical Methods Of Measuring Accommodative Convergence", American Journal of optometry and Archives of American Academy of optometry, 27 (1950), 385-396.
11. Knoll, H., "Proximal Factors In Convergence, A Theoretical Consideration", American Journal of 0ptometry and Archives of American Academy of \bar{p} ptometry, 36 (1959), 378-381.
12. Flom M., "On The Relationship Between Accommodation And Accommodative Convergence", American Journal of Optometry and Archives of American Academy of Ontometry, December 12, 1959. 619.631.
13. Grosvenor, T.. "Analysis of Phoria And Duction Findings", Optometric Weekly, August 7. 19?5, 10-13.
14. Grosvenor, T., "Binocular Vision Syndromes", Optometric Weekly, September 4, 1975, p. 46-49.
15. Morgan, M. Jr., "A Comparison Of Clinical Methods of Measuring Accommodative Convergence", American Journal of Optometry and Archives of American Academy of optometry, 27, (1950). 385-396.
16. Borish, I.M., Clinical Refraction, 3rd ed.. (The Professional Press, Inc. $\overline{1970), 883 .}$
17. Borish, I.M. Clinical Refraction, 3rd ed., (The Professional Press, Inc., 1970), 866.
18. Borish, I.M.. Clinical Refraction, 3rd ed., (The Professional Press, Inc., 1970), 244.
19. Fry, G.A., "Fundamental Variables In The Relationship Between Accommodation and Convergence", Optometric Weekly, March 18, 1943, 25.
20. Hofstetter, H.W., "The Relationship Of Proximal Convergence To Fusional and Accommodative Convergence". American Journal of Optometry and Archives of American Academy of optometry, $28,(195 \overline{1}), 300-308$.
21. Alpern, M.. "Testing Distance Effect On Phoria Measurement At Various Accommodative Levels ", A.M.A. Archives of Ophthalmology, 54 (1955), 906-915.
22. Ogle, K., Martens, T.. Dyer, J., Oculomotor Imbalance In Binocular Vision and Fixation Disparity, (Philadelphia: Lea \& Febiger, 1967), 131. 138.
23. Flom M., "On The Relationship Between Accommodation And Accommodative Convergence", American Journal of Optometry and Archives of American Academy of optometry, December $1 \overline{2,1959,619-631 .}$
