4,071 research outputs found

    The Phenomenology of Performance

    Get PDF
    My original aim for this paper was to try to find a more objective and technically rigorous way for talking about exactly how one interacts with the event of a musical performance. In a certain way I have accomplished this goal. I have found an objective way of understanding my own personal way of understanding what I am going through when I perform. However, as I collected more and more data from my peers through journals, interviews, and everyday conversation I realized that this was in vain. Trying to find anything objective in an experience as complicated as performing was a lost cause. Therefore, my initial goal changed drastically. However, the new goal of the paper was a far more fulfilling endeavor. Instead of trying to divide, categorize, and codify my peers experience into a single technical framework, I decided to use the language that I adopted for speaking about my own experience as a prompt for getting others to open up and talk about the way they experienced performing.https://remix.berklee.edu/graduate-studies-contemporary-performance/1050/thumbnail.jp

    Education in the South

    Get PDF

    In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the <it>Strongylocentrotus purpuratus </it>genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis.</p> <p>Results</p> <p>We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell) and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell) and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins.</p> <p>Conclusion</p> <p>This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Knowledge of the components of this model system may stimulate further experiments aiming at the elucidation of structure, function, and interaction of biomineral matrix components.</p

    The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The recent publication of the <it>Strongylocentrotus purpuratus </it>genome sequence rendered possible not only the identification of possible matrix proteins at the gene level, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy, proteomic analysis.</p> <p>Results</p> <p>We identified 110 proteins as components of sea urchin test and spine organic matrix. Fourty of these proteins occurred in both compartments while others were unique to their respective compartment. More than 95% of the proteins were detected in sea urchin skeletal matrices for the first time. The most abundant protein in both matrices was the previously characterized spicule matrix protein SM50, but at least eight other members of this group, many of them only known as conceptual translation products previously, were identified by mass spectrometric sequence analysis of peptides derived from <it>in vitro </it>matrix degradation. The matrices also contained proteins implicated in biomineralization processes previously by inhibition studies using antibodies or specific enzyme inhibitors, such as matrix metalloproteases and members of the mesenchyme-specific MSP130 family. Other components were carbonic anhydrase, collagens, echinonectin, a α2-macroglobulin-like protein and several proteins containing scavenger receptor cysteine-rich domains. A few possible signal transduction pathway components, such as GTP-binding proteins, a semaphorin and a possible tyrosine kinase were also identified.</p> <p>Conclusion</p> <p>This report presents the most comprehensive list of sea urchin skeletal matrix proteins available at present. The complex mixture of proteins identified in matrices of the sea urchin skeleton may reflect many different aspects of the mineralization process. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Considering the many newly identified matrix proteins, this proteomic study may serve as a road map for the further exploration of biomineralization processes in an important model organism.</p

    Offdiagonal Complexity: A computationally quick complexity measure for graphs and networks

    Get PDF
    A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This Offdiagonal Complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The Offdiagonal Complexity apporach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.Comment: 12 pages, revised version, to appear in Physica

    Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sea urchin embryo has been an important model organism in developmental biology for more than a century. This is due to its relatively simple construction, translucent appearance, and the possibility to follow the fate of individual cells as development to the pluteus larva proceeds. Because the larvae contain tiny calcitic skeletal elements, the spicules, they are also important model organisms for biomineralization research. Similar to other biominerals the spicule contains an organic matrix, which is thought to play an important role in its formation. However, only few spicule matrix proteins were identified previously.</p> <p>Results</p> <p>Using mass spectrometry-based methods we have identified 231 proteins in the matrix of the <it>S. purpuratus </it>spicule matrix. Approximately two thirds of the identified proteins are either known or predicted to be extracellular proteins or transmembrane proteins with large ectodomains. The ectodomains may have been solubilized by partial proteolysis and subsequently integrated into the growing spicule. The most abundant protein of the spicule matrix is SM50. SM50-related proteins, SM30-related proteins, MSP130 and related proteins, matrix metalloproteases and carbonic anhydrase are among the most abundant components.</p> <p>Conclusions</p> <p>The spicule matrix is a relatively complex mixture of proteins not only containing matrix-specific proteins with a function in matrix assembly or mineralization, but also: 1) proteins possibly important for the formation of the continuous membrane delineating the mineralization space; 2) proteins for secretory processes delivering proteinaceous or non-proteinaceous precursors; 3) or proteins reflecting signaling events at the cell/matrix interface. Comparison of the proteomes of different skeletal matrices allows prediction of proteins of general importance for mineralization in sea urchins, such as SM50, SM30-E, SM29 or MSP130. The comparisons also help point out putative tissue-specific proteins, such as tooth phosphodontin or specific spicule matrix metalloproteases of the MMP18/19 group. Furthermore, the direct sequence analysis of peptides by MS/MS validates many predicted genes and confirms the existence of the corresponding proteins.</p

    Backward Evolving Quantum States

    Get PDF
    The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.Comment: Contribution to the J.Phys. A special issue in honor of GianCarlo Ghirard

    The Lantern Vol. 18, No. 2, Winter 1950

    Get PDF
    • To Pledge Allegiance • The Back Porch • Love Story • Symphony Finale • Bruised Hands • Defeat • Concerning Utility • Triplet • I Echo the Common Sentiment • Heads in Pen and Inkhttps://digitalcommons.ursinus.edu/lantern/1050/thumbnail.jp

    Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice

    Get PDF
    Altres ajuts: This work was supported by grants from Ministerio de Ciencia e Innovación (SAF2005-01262 and SAF2008-00962) and from the European Community (FP6 CLINIGENE, LSHB-CT-2006-018933). X.M.A., J.A., and A.R. were recipients of a predoctoral fellowship from Ministerio de Educación, Cultura y Deporte, and D.C. received a predoctoral fellowship from Instituto de Salud Carlos III, Spain. C.J.M.In type 1 diabetes, loss of tolerance to β-cell antigens results in T-cell-dependent autoimmune destruction of β cells. The abrogation of autoreactive T-cell responses is a prerequisite to achieve long-lasting correction of the disease. The liver has unique immunomodulatory properties and hepatic gene transfer results in tolerance induction and suppression of autoimmune diseases, in part by regulatory T-cell (Treg) activation. Hence, the liver could be manipulated to treat or prevent diabetes onset through expression of key genes. IGF-I may be an immunomodulatory candidate because it prevents autoimmune diabetes when expressed in β cells or subcutaneously injected. Here, we demonstrate that transient, plasmid-derived IGF-I expression in mouse liver suppressed autoimmune diabetes progression. Suppression was associated with decreased islet inflammation and β-cell apoptosis, increased β-cell replication, and normalized β-cell mass. Permanent protection depended on exogenous IGF-I expression in liver nonparenchymal cells and was associated with increased percentage of intrapancreatic Tregs. Importantly, Treg depletion completely abolished IGF-I-mediated protection confirming the therapeutic potential of these cells in autoimmune diabetes. This study demonstrates that a nonviral gene therapy combining the immunological properties of the liver and IGF-I could be beneficial in the treatment of the disease
    corecore