365 research outputs found
Patterns of Fungal Attack in Wood-Plastic Composites Following Exposure in a Soil Block Test
The ability of white and brown rot fungi to colonize wood-plastic composites was investigated by measuring weight loss and anatomical changes. Three composite materials were evaluated. The material containing a 70/30 wood-high density polyethylene (HDPE) mixture was most susceptible to fungal attack, while two different 50/50 wood-HDPE composites experienced little or no attack. Scanning electron microscopic (SEM) examination of samples not exposed to fungus revealed the presence of voids between the wood and HDPE in all three materials. Similar examination of decayed samples of the composite with a higher wood content revealed that the fungi had thoroughly colonized the particles, particularly near the point of initial fungal exposure. Fungal hyphae were also prevalent in the voids deeper in the composite. The two composites containing higher HDPE levels had little evidence of fungal attack, despite the presence of voids
The Bandwidth of Transient Yaw Effects on Vehicle Aerodynamics
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, the unsteady wakes from other vehicles and as a result of traversing through the stationary wakes of road side obstacles. There is increasing concern about potential differences in aerodynamic behaviour measured in steady flow wind tunnel conditions and that which occurs for vehicles on the road. It is possible to introduce turbulence into the wind tunnel environment (e.g. by developing active turbulence generators) but on-road turbulence is wide ranging in terms of both its intensity and frequency and it would be beneficial to better understand what aspects of the turbulence are of greatest importance to the aerodynamic performance of vehicles. There has been significant recent work on the characterisation of turbulent airflow relevant to road vehicles. The simulation of this time-varying airflow is now becoming possible in wind tunnels and in CFD. Less is known about the range of turbulence length scales and intensities that are significant to the performance of vehicles. It is only necessary to simulate (experimentally or computationally) the Venn intersection of the range of conditions experienced and the range that are important to the vehicle's performance. The focus of this work is on transient yaw fluctuations. Time-resolved simulations of simple two dimensional parametric geometries subjected to yaw transients at a range of different time scales were conducted using Exa Powerflow. The effects of model geometry, Reynolds number yaw fluctuation amplitude and superposition were investigated. It was found that, in general, the flow could be treated as quasi-steady for reduced frequencies below 0.3 (based on model length and freestream velocity), which is consistent with theory. The most significant changes were observed in a critical reduced frequency range between ω R = 0.3 and ω R = 1.5 (scales of 4-20 vehicle lengths, or periods of 0.6 to 3s for a vehicle at 30 m/s). Higher frequencies will have significant effects, but these were observed to show little sensitivity to frequency above the critical range. Small physical features on real vehicles will add importance to smaller, but not larger, scales. The dynamic effects were largely independent of Reynolds number, including for near-inviscid conditions, indicating that the sources of the non-quasi-steady response were not viscous in origin. Increasing yaw amplitude or combining multiple frequency components did not have a summative impact suggesting that it may not be possible to describe vehicle response to transient conditions using linear concepts such as transfer or admittance functions
Study of the microstructure resulting from brazed aluminium materials used in heat exchangers
Re-solidification of AA4343 cladding after brazing as well as the related precipitation in the modified AA3003 core material have been investigated. Analysis of the re-solidified material showed that partial dissolution of the core alloy occurs in both the brazing joints and away of them. Far from the brazing joints, the dissolution is, however, limited and diffusion of silicon from the liquid into the core material leads to solid-state precipitation in the so-called “band of dense precipitates” (BDP). On the contrary, the dissolution is enhanced in the brazing joint to such an extent that no BDP could be observed. The intermetallic phases present in the resolidified areas as well as in the core material have been analyzed and found to be mainly cubic alpha-Al(Mn,Fe)Si. These results were then compared to predictions made with available phase diagram information
DURABILITY OF MASS TIMBER STRUCTURES: A REVIEW OF THE BIOLOGICAL RISKS
Mass timber structures have the potential to change wooden construction on a global scale. Numerous mass timber high-rise buildings are in planning, under development or already built and their performance will alter how architects and engineers view wood as a material. To date, the discussion of material durability and biodegradation in these structures has been limited. While all materials can be degraded by wetting, the potential for biodegradation of wood in a mass timber building requires special consideration. Identifying and eliminating the conditions that might lead to this degradation will be critical for ensuring proper performance of wood in these structures. This article reviews and contrasts potential sources of biodegradation that exist for traditional wood construction with those in mass timber construction and identifies methods for limiting the degradation risk. Finally, future research needs are outlined
Assessing Autism in Deaf/Hard-of-Hearing Youths: Interdisciplinary Teams, COVID Considerations, and Future Directions
Autism spectrum disorders are more prevalent in children who are Deaf or Hard of Hearing (D/HH) than in the general population. This potential for diagnostic overlap underscores the importance of understanding the best approaches for assessing autism spectrum disorder in D/HH youths. Despite the recognition of clinical significance, youths who are D/HH are often identified as autistic later than individuals with normal hearing, which results in delayed access to appropriate early intervention services. Three primary barriers to early identification include behavioral phenotypic overlap, a lack of “gold-standard” screening and diagnostic tools for this population, and limited access to qualified clinicians. In the current article, we seek to address these barriers to prompt an appropriate identification of autism by providing recommendations for autism assessment in children who are D/HH from an interdisciplinary hearing and development clinic, including virtual service delivery during COVID-19. Strengths, gaps, and future directions for implementation are addressed
Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques
Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease
High-voltage pulse generator using sequentially charged full-bridge modular multilevel converter Sub-modules, for water treatment applications
This paper proposes a new high-voltage pulse generator (PG) fed from a low-voltage DC supply Vs, which charges one arm of N series-connected full-bridge (FB) modular multilevel converter (MMC) sub-module (SM) capacitors sequentially, through a resistive-inductive branch. By utilising FB-SMs, the proposed PG is able to generate bipolar rectangular pulses of peak NVs and unipolar rectangular pulses of either polarity, at high repetition rates. Asymmetrical pulses are also possible. The proposed topology is assessed via simulation and scaled-down experimentation, which establish the viability of the topology for water treatment applications
Effectiveness of the capsaicin 8% patch in the management of peripheral neuropathic pain in European clinical practice: the ASCEND study
Background
In randomised studies, the capsaicin 8% patch has demonstrated effective pain relief in patients with peripheral neuropathic pain (PNP) arising from different aetiologies.
Methods
ASCEND was an open-label, non-interventional study of patients with non-diabetes-related PNP who received capsaicin 8% patch treatment, according to usual clinical practice, and were followed for ≤52 weeks. Co-primary endpoints were percentage change in the mean numeric pain rating scale (NPRS) ‘average daily pain’ score from baseline to the average of Weeks 2 and 8 following first treatment; and median time from first to second treatment. The primary analysis was intended to assess analgesic equivalence between post-herpetic neuralgia (PHN) and other PNP aetiologies. Health-related quality of life (HRQoL, using EQ-5D), Patient Global Impression of Change (PGIC) and tolerability were also assessed.
Results
Following first application, patients experienced a 26.6% (95% CI: 23.6, 29.62; n = 412) reduction in mean NPRS score from baseline to Weeks 2 and 8. Equivalence was demonstrated between PHN and the neuropathic back pain, post-operative and post-traumatic neuropathic pain and ‘other’ PNP aetiology subgroups. The median time from first to second treatment was 191 days (95% CI: 147, 235; n = 181). Forty-four percent of all patients were responders (≥30% reduction in NPRS score from baseline to Weeks 2 and 8) following first treatment, and 86.9% (n = 159/183) remained so at Week 12. A sustained pain response was observed until Week 52, with a 37.0% (95% CI: 31.3, 42.7; n = 176) reduction in mean NPRS score from baseline. Patients with the shortest duration of pain (0–0.72 years) experienced the highest pain response from baseline to Weeks 2 and 8. Mean EQ-5D index score improved by 0.199 utils (responders: 0.292 utils) from baseline to Week 2 and was maintained until Week 52. Most patients reported improvements in PGIC at Week 2 and at all follow-up assessments regardless of number of treatments received. Adverse events were primarily mild or moderate reversible application site reactions.
Conclusion
In European clinical practice, the capsaicin 8% patch provided effective and sustained pain relief, substantially improved HRQoL, improved overall health status and was generally well tolerated in a heterogeneous PNP population
Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance
A vaccine for hepatitis C virus (HCV) is urgently needed. Development of broadly neutralizing plasma antibodies during acute infection is associated with HCV clearance, but the viral epitopes of these plasma antibodies are unknown. Identifying these epitopes could define the specificity and function of neutralizing antibodies (NAbs) that should be induced by a vaccine. Here, we present the development and application of a high-throughput method that deconvolutes polyclonal anti-HCV NAbs in plasma, delineating the epitope specificities of anti-HCV NAbs in acute-infection plasma of 44 humans with subsequent clearance or persistence of HCV. Remarkably, we identified multiple broadly neutralizing antibody combinations that were associated with greater plasma neutralizing breadth and with HCV clearance. These studies have the potential to inform new strategies for vaccine development by identifying broadly neutralizing antibody combinations in plasma associated with the natural clearance of HCV, while also providing a high-throughput assay that could identify these responses after vaccination trials
Gendered self-views across 62 countries: A test of competing models
Social role theory posits that binary gender gaps in agency and communion should be larger in less egalitarian countries, reflecting these countries’ more pronounced sex-based power divisions. Conversely, evolutionary and self-construal theorists suggest that gender gaps in agency and communion should be larger in more egalitarian countries, reflecting the greater autonomy support and flexible self-construction processes present in these countries. Using data from 62 countries (N = 28,640), we examine binary gender gaps in agentic and communal self-views as a function of country-level objective gender equality (the Global Gender Gap Index) and subjective distributions of social power (the Power Distance Index). Findings show that in more egalitarian countries, gender gaps in agency are smaller and gender gaps in communality are larger. These patterns are driven primarily by cross-country differences in men’s self-views and by the Power Distance Index (PDI) more robustly than the Global Gender Gap Index (GGGI). We consider possible causes and implications of these findings.info:eu-repo/semantics/acceptedVersio
- …