154 research outputs found

    On the performance of multiple imputation based on chained equations in tackling missing data of the African α3.7 -globin deletion in a malaria association study.

    Get PDF
    Multiple imputation based on chained equations (MICE) is an alternative missing genotype method that can use genetic and nongenetic auxiliary data to inform the imputation process. Previously, MICE was successfully tested on strongly linked genetic data. We have now tested it on data of the HBA2 gene which, by the experimental design used in a malaria association study in Tanzania, shows a high missing data percentage and is weakly linked with the remaining genetic markers in the data set. We constructed different imputation models and studied their performance under different missing data conditions. Overall, MICE failed to accurately predict the true genotypes. However, using the best imputation model for the data, we obtained unbiased estimates for the genetic effects, and association signals of the HBA2 gene on malaria positivity. When the whole data set was analyzed with the same imputation model, the association signal increased from 0.80 to 2.70 before and after imputation, respectively. Conversely, postimputation estimates for the genetic effects remained the same in relation to the complete case analysis but showed increased precision. We argue that these postimputation estimates are reasonably unbiased, as a result of a good study design based on matching key socio-environmental factors

    Group A Streptococcus pharyngitis among schoolchildren in Mbulu District, Tanzania

    Get PDF
    Streptococcal pharyngitis continues to be one of the most common childhood illnesses throughout the world. Recent evidence indicates an increased incidence of group A Streptococcal (GAS) infections, which is a significant cause of mortality and morbidity on the global scale. The objective of this study was to determine prevalence of group A Streptococcus infection among primary schoolchildren in Mbulu district, northern Tanzania. This study was carried out in five primary schools, namely Mangisha, Gunyoda, Kainam, Hyloto and Tsaayo. GAS pharyngitis was diagnosed clinically and confirmed by laboratory investigation using a rapid test. A total of 320 study participants were recruited in the study. Overall, more than half (53.8%) of the children were females.  The overall prevalence of Group a Streptococcal infection was 6.9% (95%CI [4.4-10.2]).  The highest frequency of GAS infection was observed among children at Hyloto primary school (14.3%) while, none of the children in Tsaayo had GAS infection. This study potentially indicates that group A Streptococcal infection prevalent among schoolchildren in Mbulu district calling for the need of education to create awareness of the condition in the community

    Relationship Between Alpha+-Thalassaemia and Glutathione-S-Transferases Polymorphisms in Children with Severe Malaria in Tanzania

    Get PDF
    Alpha+-thalassaemia is well known for conferring partial protection to against severe malaria. On the other, Glutathione –S-transferase (GST) polymorphism has recently been associated to severe malaria in children. A retrospective cross sectional study was carried out to determine the relationship between genotypic polymorphisms of alpha+-thalassaemia and glutathione-S-transferase in children with severe malaria. A total of 148 DNA samples from children aged between 1 and 15 years with mild and severe malaria were retrieved and determined by polymerase chain reaction. Children with Glutathione-S-transferase-pi1 (GSTP1)-polymorphism were observed to have three fold risk (OR = 2.9; 95% CI =1.3- 6.1; P = 0.006) of developing severe malaria compared to mild malaria in Mnyuzi-Korogwe, north-eastern, Tanzania. In the presence of Glutathione- S-transferase-pi1 polymorphism, children were found to have 3% decreased protective effect of alpha+- thalassaemia polymorphisms (homozygotes and heterozygotes) against severe malaria although this was not statistically significant [ OR = 0.81 (95% CI = 0.5-1.5; P = 0.5) to OR = 0.78 (95% CI = 0.4-1.5; P = 0.44)]. We conclude that Glutathione-S-transferase-pi1 polymorphism increases risk of developing severe malaria due to Plasmodium falciparum in children. The observed inverse relationship between GSTP1 polymorphisms and alpha+-thalassaemia to children with severe malaria need further investigation

    Malaria Host Candidate Genes Validated by Association With Current, Recent, and Historical Measures of Transmission Intensity

    Get PDF
    Background: Human malaria susceptibility is determined by multiple genetic factors. It is unclear, however, which genetic variants remain important over time. Methods: Genetic associations of 175 high-quality polymorphisms within several malaria candidate genes were examined in a sample of 8096 individuals from northeast Tanzania using altitude, seroconversion rates, and parasite rates as proxies of historical, recent, and current malaria transmission intensity. A principal component analysis was used to derive 2 alternative measures of overall malaria propensity of a location across different time scales. Results: Common red blood cell polymorphisms (ie, hemoglobin S, glucose-6-phosphate dehydrogenase, and α-thalassemia) were the only ones to be associated with all 3 measures of transmission intensity and the first principal component. Moderate associations were found between some immune response genes (ie, IL3 and IL13) and parasite rates, but these could not be reproduced using the alternative measures of malaria propensity. Conclusions: We have demonstrated the potential of using altitude and seroconversion rate as measures of malaria transmission capturing medium- to long-term time scales to detect genetic associations that are likely to persist over time. These measures also have the advantage of minimizing the deleterious effects of random factors affecting parasite rates on the respective association signals

    USP38, FREM3, SDC1, DDC, and LOC727982 Gene Polymorphisms and Differential Susceptibility to Severe Malaria in Tanzania

    Get PDF
    Populations exposed to Plasmodium falciparum infection develop genetic mechanisms of protection against severe malarial disease. Despite decades of genetic epidemiological research, the sickle cell trait (HbAS) sickle cell polymorphism, ABO blood group, and other hemoglobinopathies remain the few major determinants in severe malaria to be replicated across different African populations and study designs. Within a case-control study in a region of high transmission in Tanzania (n = 983), we investigated the role of 40 new loci identified in recent genome-wide studies. In 32 loci passing quality control procedures, we found polymorphisms in USP38, FREM3, SDC1, DDC, and LOC727982 genes to be putatively associated with differential susceptibility to severe malaria. Established candidates explained 7.4% of variation in severe malaria risk (HbAS polymorphism, 6.3%; α-thalassemia, 0.3%; ABO group, 0.3%; and glucose-6-phosphate dehydrogenase deficiency, 0.5%) and the new polymorphisms, another 4.3%. The regions encompassing the loci identified are promising targets for the design of future treatment and control interventions

    Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial.

    Get PDF
    BACKGROUND: Progress in malaria control is under threat by wide-scale insecticide resistance in malaria vectors. Two recent vector control products have been developed: a long-lasting insecticidal net that incorporates a synergist piperonyl butoxide (PBO) and a long-lasting indoor residual spraying formulation of the insecticide pirimiphos-methyl. We evaluated the effectiveness of PBO long-lasting insecticidal nets versus standard long-lasting insecticidal nets as single interventions and in combination with the indoor residual spraying of pirimiphos-methyl. METHODS: We did a four-group cluster randomised controlled trial using a two-by-two factorial design of 48 clusters derived from 40 villages in Muleba (Kagera, Tanzania). We randomly assigned these clusters using restricted randomisation to four groups: standard long-lasting insecticidal nets, PBO long-lasting insecticidal nets, standard long-lasting insecticidal nets plus indoor residual spraying, or PBO long-lasting insecticidal nets plus indoor residual spraying. Both standard and PBO nets were distributed in 2015. Indoor residual spraying was applied only once in 2015. We masked the inhabitants of each cluster to the type of nets received, as well as field staff who took blood samples. Neither the investigators nor the participants were masked to indoor residual spraying. The primary outcome was the prevalence of malaria infection in children aged 6 months to 14 years assessed by cross-sectional surveys at 4, 9, 16, and 21 months after intervention. The endpoint for assessment of indoor residual spraying was 9 months and PBO long-lasting insecticidal nets was 21 months. This trial is registered with ClinicalTrials.gov, number NCT02288637. FINDINGS: 7184 (68·0%) of 10 560 households were selected for post-intervention survey, and 15 469 (89·0%) of 17 377 eligible children from the four surveys were included in the intention-to-treat analysis. Of the 878 households visited in the two indoor residual spraying groups, 827 (94%) had been sprayed. Reported use of long-lasting insecticidal nets, across all groups, was 15 341 (77·3%) of 19 852 residents after 1 year, decreasing to 12 503 (59·2%) of 21 105 in the second year. Malaria infection prevalence after 9 months was lower in the two groups that received PBO long-lasting insecticidal nets than in the two groups that received standard long-lasting insecticidal nets (531 [29%] of 1852 children vs 767 [42%] of 1809; odds ratio [OR] 0·37, 95% CI 0·21-0·65; p=0·0011). At the same timepoint, malaria prevalence in the two groups that received indoor residual spraying was lower than in groups that did not receive indoor residual spraying (508 [28%] of 1846 children vs 790 [44%] of 1815; OR 0·33, 95% CI 0·19-0·55; p<0·0001) and there was evidence of an interaction between PBO long-lasting insecticidal nets and indoor residual spraying (OR 2·43, 95% CI 1·19-4·97; p=0·0158), indicating redundancy when combined. The PBO long-lasting insecticidal net effect was sustained after 21 months with a lower malaria prevalence than the standard long-lasting insecticidal net (865 [45%] of 1930 children vs 1255 [62%] of 2034; OR 0·40, 0·20-0·81; p=0·0122). INTERPRETATION: The PBO long-lasting insecticidal net and non-pyrethroid indoor residual spraying interventions showed improved control of malaria transmission compared with standard long-lasting insecticidal nets where pyrethroid resistance is prevalent and either intervention could be deployed to good effect. As a result, WHO has since recommended to increase coverage of PBO long-lasting insecticidal nets. Combining indoor residual spraying with pirimiphos-methyl and PBO long-lasting insecticidal nets provided no additional benefit compared with PBO long-lasting insecticidal nets alone or standard long-lasting insecticidal nets plus indoor residual spraying. FUNDING: UK Department for International Development, Medical Research Council, and Wellcome Trust

    Risk factors for malaria infection prevalence and household vector density between mass distribution campaigns of long-lasting insecticidal nets in North-western Tanzania.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most widely deployed vector control intervention in sub-Saharan Africa to prevent malaria. Recent reports indicate selection of pyrethroid insecticide resistance is widespread in mosquito vectors. This paper explores risk factors associated with malaria infection prevalence and vector density between mass distribution campaigns, changes in net coverage, and loss of protection in an area of high pyrethroid resistance in Northwest Tanzania. METHODS: A cross sectional malaria survey of 3456 children was undertaken in 2014 in Muleba district, Kagera region west of Lake Victoria. Vector density was assessed using indoor light traps and outdoor tent traps. Anophelines were identified to species using PCR and tested for Plasmodium falciparum circumsporozoite protein. Logistic regression was used to identify household and environmental factors associated with malaria infection and regression binomial negative for vector density. RESULTS: LLIN use was 27.7%. Only 16.9% of households had sufficient nets to cover all sleeping places. Malaria infection was independently associated with access to LLINs (OR: 0.57; 95% CI 0.34-0.98). LLINs less than 2 years old were slightly more protective than older LLINs (53 vs 65% prevalence of infection); however, there was no evidence that LLINs in good condition (hole index < 65) were more protective than LLINs, which were more holed. Other risk factors for malaria infection were age, group, altitude and house construction quality. Independent risk factors for vector density were consistent with malaria outcomes and included altitude, wind, livestock, house quality, open eaves and LLIN usage. Indoor collections comprised 4.6% Anopheles funestus and 95.4% Anopheles gambiae of which 4.5% were Anopheles arabiensis and 93.5% were Anopheles gambiae sensu stricto. CONCLUSION: Three years after the mass distribution campaign and despite top-ups, LLIN usage had declined considerably. While children living in households with access to LLINs were at lower risk of malaria, infection prevalence remained high even among users of LLINs in good condition. While effort should be made to maintain high coverage between campaigns, distribution of standard pyrethroid-only LLINs appears insufficient to prevent malaria transmission in this area of intense pyrethroid resistance

    African glucose-6-phosphate dehydrogenase alleles associated with protection from severe malaria in heterozygous females in Tanzania.

    Get PDF
    X-linked Glucose-6-phosphate dehydrogenase (G6PD) A- deficiency is prevalent in sub-Saharan Africa populations, and has been associated with protection from severe malaria. Whether females and/or males are protected by G6PD deficiency is uncertain, due in part to G6PD and malaria phenotypic complexity and misclassification. Almost all large association studies have genotyped a limited number of G6PD SNPs (e.g. G6PD202 / G6PD376), and this approach has been too blunt to capture the complete epidemiological picture. Here we have identified 68 G6PD polymorphisms and analysed 29 of these (i.e. those with a minor allele frequency greater than 1%) in 983 severe malaria cases and controls in Tanzania. We establish, across a number of SNPs including G6PD376, that only female heterozygotes are protected from severe malaria. Haplotype analysis reveals the G6PD locus to be under balancing selection, suggesting a mechanism of protection relying on alleles at modest frequency and avoiding fixation, where protection provided by G6PD deficiency against severe malaria is offset by increased risk of life-threatening complications. Our study also demonstrates that the much-needed large-scale studies of severe malaria and G6PD enzymatic function across African populations require the identification and analysis of the full repertoire of G6PD genetic markers

    Links between environment, diet, and the hunter-gatherer microbiome

    Get PDF
    The study of traditional populations provides a view of human-associated microbes unperturbed by industrialization, as well as a window into the microbiota that co-evolved with humans. Here we discuss our recent work characterizing the microbiota from the Hadza hunter-gatherers of Tanzania. We found seasonal shifts in bacterial taxa, diversity, and carbohydrate utilization by the microbiota. When compared to the microbiota composition from other populations around the world, the Hadza microbiota shares bacterial families with other traditional societies that are rare or absent from microbiotas of industrialized nations. We present additional observations from the Hadza microbiota and their lifestyle and environment, including microbes detected on hands, water, and animal sources, how the microbiota varies with sex and age, and the short-term effects of introducing agricultural products into the diet. In the context of our previously published findings and of these additional observations, we discuss a path forward for future work

    The usefulness of rapid diagnostic tests in the new context of low malaria transmission in zanzibar.

    Get PDF
    BACKGROUND\ud \ud We assessed if histidine-rich-protein-2 (HRP2) based rapid diagnostic test (RDT) remains an efficient tool for Plasmodium falciparum case detection among fever patients in Zanzibar and if primary health care workers continue to adhere to RDT results in the new epidemiological context of low malaria transmission. Further, we evaluated the performance of RDT within the newly adopted integrated management of childhood illness (IMCI) algorithm in Zanzibar.\ud \ud METHODS AND FINDINGS\ud \ud We enrolled 3890 patients aged ≥2 months with uncomplicated febrile illness in this health facility based observational study conducted in 12 primary health care facilities in Zanzibar, between May-July 2010. One patient had an inconclusive RDT result. Overall 121/3889 (3.1%) patients were RDT positive. The highest RDT positivity rate, 32/528 (6.1%), was found in children aged 5-14 years. RDT sensitivity and specificity against PCR was 76.5% (95% CI 69.0-83.9%) and 99.9% (95% CI 99.7-100%), and against blood smear microscopy 78.6% (95% CI 70.8-85.1%) and 99.7% (95% CI 99.6-99.9%), respectively. All RDT positive, but only 3/3768 RDT negative patients received anti-malarial treatment. Adherence to RDT results was thus 3887/3889 (99.9%). RDT performed well in the IMCI algorithm with equally high adherence among children <5 years as compared with other age groups.\ud \ud CONCLUSIONS\ud \ud The sensitivity of HRP-2 based RDT in the hands of health care workers compared with both PCR and microscopy for P. falciparum case detection was relatively low, whereas adherence to test results with anti-malarial treatment was excellent. Moreover, the results provide evidence that RDT can be reliably integrated in IMCI as a tool for improved childhood fever management. However, the relatively low RDT sensitivity highlights the need for improved quality control of RDT use in primary health care facilities, but also for more sensitive point-of-care malaria diagnostic tools in the new epidemiological context of low malaria transmission in Zanzibar.\ud \ud TRIAL REGISTRATION\ud \ud ClinicalTrials.gov NCT01002066
    • …
    corecore