20 research outputs found

    Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.

    Get PDF
    Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved

    Effect of ionizing radiation on the protein-synthesizing system of brain neurons of ground squirrels in different functional states

    No full text
    Using fluorescence and electron microscopy, it is shown that the physiological state of ground squirrels exposed to ionizing radiation at different stages of the torpor-awakeness (hypothermia-normothermia) cycle is the main factor responsible for changes in the protein-synthesizing system of neurons in the hippocampus (fields CA1 and CA3) and the sensomotor cortex. The neurons of animals irradiated in the state of awakeness are less radioresistant and recover more slowly than neurons of animals irradiated in torpor, with the difference being more distinct in neurons of the CA1 field. The effect of irradiation is weak in animals entering torpor and reaches a peak in awakening animals. It is proposed that the inhibition of protein synthesis in the latter case takes place at the elongation stage, with heavy polysomes formed in the cytoplasm of neurons

    Protective effect of hypothermia on brain neurons in rats exposed to ionizing radiation

    No full text
    The protein-synthesizing system of hippocampal (CA1, CA3) and sensorimotor cortex neurons is damaged less and recovers much quicker in rats exposed to 8 Gy of gamma-radiation under hypoxia/hypercapnia (body temperature 16-18°C) than under usual conditions, as evidenced by microfluorimetry and electron microscopy. The radioprotective effect does not cover the membrane structures (endoplasmic reticulum and Golgi complex), and their restoration is not so prompt

    Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism

    Get PDF
    Aerolysin is the founding member of a superfamily of β-pore–forming toxins whose pore structure is unknown. We have combined X-ray crystallography, cryo-EM, molecular dynamics and computational modeling to determine the structures of aerolysin mutants in their monomeric and heptameric forms, trapped at various stages of the pore formation process. A dynamic modeling approach based on swarm intelligence was applied, whereby the intrinsic flexibility of aerolysin extracted from new X-ray structures was used to fully exploit the cryo-EM spatial restraints. Using this integrated strategy, we obtained a radically new arrangement of the prepore conformation and a near-atomistic structure of the aerolysin pore, which is fully consistent with all of the biochemical data available so far. Upon transition from the prepore to pore, the aerolysin heptamer shows a unique concerted swirling movement, accompanied by a vertical collapse of the complex, ultimately leading to the insertion of a transmembrane β-barrel
    corecore