289 research outputs found
CLOUD-SLA: Service Level Agreement for Cloud Computing
Abstract In the last few years, the cloud computing becomes the most important developing platform for both scientific and commercial application. Clouds are rapidly becoming an important platform for scientific applications. In the Cloud environment with uncountable numeric nodes, resource is inevitably unreliable, which has a great effect on task execution and scheduling. In cloud computing, cloud providers can offer cloud consumers two provisioning plans for computing resources, namely reservation and on-demand plans. In general, cost of utilizing computing resources provisioned by reservation plan is cheaper than that provisioned by on-demand plan, since cloud consumer has to pay to provider in advance. With the reservation plan, the consumer can reduce the total resource provisioning cost. However, the best advance reservation of resources is difficult to be achieved due to uncertainty of consumer's future demand and providers' resource prices. To address this problem, The SLA can provision computing resources for being used in multiple provisioning stages as well as a long-term plan, The Service Level Agreement (SLA) based super scheduling approach promotes cooperative resource sharing. Super scheduling is facilitated between administratively and topologically distributed sites via resource schedulers such as Resource brokers and workflow engines
Recommended from our members
Urinary cell mRNA profiles predictive of human kidney allograft status
Kidney allograft status is currently characterized using the invasive percutaneous needle core biopsy procedure. The procedure has become safer over the years, but challenges and complications still exist including sampling error, interobserver variability, bleeding, arteriovenous fistula, graft loss, and even death. Because the most common type of acute rejection is distinguished by inflammatory cells exiting the intravascular compartment and gaining access to the renal tubular space, we reasoned that a kidney allograft may function as an in vivo flow cytometer and sort cells involved in rejection into urine. To test this idea, we developed quantitative polymerase chain reaction (PCR) assays for absolute quantification of mRNA and pre-amplification protocols to overcome the low RNA yield from urine. Here, we review our single center urinary cell mRNA profiling studies that led to the multicenter Clinical Trials in Organ Transplantation (CTOT-04) study and the discovery and validation of a 3-gene signature of 18S rRNA-normalized measures of CD3ε mRNA and IP-10 mRNA and 18S rRNA that is diagnostic and predictive of acute cellular rejection in the kidney allograft. We also review our development of a 4-gene signature of mRNAs for vimentin, NKCC2, E-cadherin, and 18S rRNA diagnostic of interstitial fibrosis/tubular atrophy (IF/TA)
Allograft rejection and tubulointerstitial fibrosis in human kidney allografts: Interrogation by urinary cell mRNA profiling
Because the kidney allograft has the potential to function as an in-vivo flow cytometer and facilitate the access of immune cells and kidney parenchymal cells in to the urinary space, we hypothesized that mRNA profiling of urinary cells offers a noninvasive means of assessing the kidney allograft status. We overcame the inherent challenges of urinary cell mRNA profiling by developing pre-amplification protocols to compensate for low RNA yield from urinary cells and by developing robust protocols for absolute quantification mRNAs using RT-PCR assays. Armed with these tools, we undertook first single-center studies urinary cell mRNA profiling and then embarked on the multicenter Clinical Trials in Organ Transplantation-04 study of kidney transplant recipients. We report here our discovery and validation of diagnostic and prognostic biomarkers of acute cellular rejection and of interstitial fibrosis and tubular atrophy (IF/TA). Our urinary cell mRNA profiling studies, in addition to demonstrating the feasibility of accurate diagnosis of acute cellular rejection and IF/TA in the kidney allograft, advance mechanistic and potentially targetable biomarkers. Interventional trials, guided by urinary cell mRNA profiles, may lead to personalized immunosuppression in recipients of kidney allografts
Antibiotic subclasses differentially perturb the gut microbiota in kidney transplant recipients
IntroductionThe impact of antibiotics on the gut microbiota in kidney transplant recipients is not well characterized. In this study, we determine the impact of different subclasses of antibiotics on the gut microbiota in a cohort of 168 kidney transplant recipients.MethodsGut microbiome profiling was performed on 510 fecal specimens using 16S rRNA gene sequencing of the V4-V5 hypervariable region. We classified fecal specimens by antibiotic exposure into 5 categories: Beta-lactam, Fluoroquinolone (FQ), Beta-lactam & FQ Group, Other Antibiotics, and No Antibiotic (No Abx). Mixed-effects regression models were utilized to identify changes in microbial diversity and in the centered log-ratio (CLR) transformed abundance of genera while adjusting for important covariates.ResultsAntibiotic administration was associated with a significant decrease in the Shannon alpha diversity index, a decreased abundance of 11 taxa including Eubacterium and Ruminococcus, and an increased abundance of 16 taxa including Enterococcus and Staphylococcus. Exposure to Beta-lactam antibiotics was associated with an increased abundance of 10 taxa including Enterococcus and a decreased abundance of 5 taxa including Eubacterium while exposure to FQ antibiotics was associated with an increased abundance of 3 taxa and a decreased abundance of 4 taxa including Ruminococcus.ConclusionsBeta-lactam antibiotics and FQ antibiotics have a profound impact on the gut microbiota in kidney transplant recipients. Given the link of the gut microbiota to infectious complications, antibiotic associated changes in the microbiota may lead to an increased risk for further infections
Parma consensus statement on metabolic disruptors
A multidisciplinary group of experts gathered in Parma Italy for a workshop hosted by the University of Parma, May 16–18, 2014 to address concerns about the potential relationship between environmental metabolic disrupting chemicals, obesity and related metabolic disorders. The objectives of the workshop were to: 1. Review findings related to the role of environmental chemicals, referred to as “metabolic disruptors”, in obesity and metabolic syndrome with special attention to recent discoveries from animal model and epidemiology studies; 2. Identify conclusions that could be drawn with confidence from existing animal and human data; 3. Develop predictions based on current data; and 4. Identify critical knowledge gaps and areas of uncertainty. The consensus statements
are intended to aid in expanding understanding of the role of metabolic disruptors in the obesity and metabolic disease epidemics, to move the field forward by assessing the current state of the science and to identify research needs on the role of environmental chemical exposures in these diseases. We propose broadening the definition of obesogens to that of metabolic disruptors, to encompass chemicals that play a role in altered susceptibility to obesity, diabetes and related metabolic disorders including metabolic syndrome
DDT, epigenetic harm, and transgenerational environmental justice
Although the environmentally harmful effects of widespread dichlorodiphenyltrichloroethane (DDT) use became well-known following Rachel Carson’s Silent Spring (1962), its human health effects have more recently become clearer. A ban on the use of DDT has been in place for over 30 years, but recently DDT has been used for malaria control in areas such as Africa. Recent work shows that DDT has transgenerational effects in progeny and generations never directly exposed to DDT. These effects have health implications for individuals who are not able to have any voice in the decision to use the pesticide. The transgenerational effects of DDT are considered in light of some widely accepted ethical principles. We argue that this reframes the decision to use DDT, requiring us to incorporate new considerations, and new kinds of decision making, into the deliberative process that determines its ongoing use. Ethical considerations for intergenerational environmental justice are presented that include concern and respect for autonomy, nonmaleficence, and justice. Here, we offer a characterization of the kinds of ethical considerations that must be taken into account in any satisfactory decisions to use DDT
High type II error and interpretation inconsistencies when attempting to refute transgenerational epigenetic inheritance
Synthetic fixative in perfume formulation: evaluating longevity, stability, and cost
This study was conducted to evaluate the effects of fixative on fragrance longevity, pH stability, formulation stability, and cost-effectiveness in perfume formulation. The comparison Ambroxane (synthetic fixative) and a control sample without fixative aimed to determine its role in enhancing perfume performance while maintaining formulation integrity. Experimental analyses included evaporation rate testing, pH measurement, stability assessment, and cost evaluation. The evaporation rate test measured fragrance longevity, while pH analysis was conducted using pH strips and a digital pH meter. Stability testing assessed the physical integrity of formulations under room temperature (27°C), high temperature (50°C), and low temperature (4°C) over 14 days. The cost analysis compared the economic feasibility of Ambroxane in large-scale production. The evaporation rate test showed that Ambroxane had a slower evaporation rate at 0.010 mg/hour, while the control sample evaporated the fastest at 0.017 mg/hour. pH analysis revealed that Ambroxane resulted in a lower pH (7.04), followed by the Control (7.11), with statistical significance confirmed (p < 0.05). Stability testing confirmed that both formulations remained clear and homogeneous across all conditions, with no visible phase separation or discoloration. Cost analysis indicated that the Ambroxane formulation (RM 6.61 per 50 mL) was cheaper compared to the control formulation (RM 7.41 per 50 mL). The findings confirm that fixative significantly impacts fragrance longevity, stability, and cost. Ambroxane provided superior longevity and cost-effectiveness, making it suitable for large-scale production, with minimal impact on stability and pH. This study successfully met its objective by providing a comprehensive comparison of fixative material, offering valuable insights for perfumers and manufacturers in selecting Ambroxane as an optimal fixative based on market positioning, cost constraints, and fragrance performance requirements
The expression of hyperpolarization activated cyclic nucleotide gated (HCN) channels in the rat ovary are dependent on the type of cell and the reproductive age of the animal: a laboratory investigation
<p>Abstract</p> <p>Background</p> <p>Aim of this study was to test the hypothesis that levels of hyperpolarization activated cyclic nucleotide gated channels 1 to 4 (HCN1-4) are linked to the reproductive age of the ovary.</p> <p>Methods</p> <p>Young, adult, and reproductively aged ovaries were collected from Sprague-Dawley rats. RT-PCR and western blot analysis of ovaries was performed to investigate the presence of mRNA and total protein for HCN1-4. Immunohistochemistry with semiquantitative H score analysis was performed using whole ovarian histologic sections.</p> <p>Results</p> <p>RT-PCR analysis showed the presence of mRNA for HCN1-4. Western blot analysis revealed HCN1-3 proteins in all ages of ovarian tissues. Immunohistochemistry with H score analysis demonstrated distinct age-related changes in patterns of HCN1-3 in the oocytes, granulosa cells, theca cells, and corpora lutea. HCN4 was present only in the oocytes, with declining levels during the reproduction lifespan.</p> <p>Conclusion</p> <p>The evidence presented here demonstrates cell-type and developmental age patterns of HCN1-4 channel expression in rat ovaries. Based on this, we hypothesize that HCN channels have functional significance in rat ovaries and may have changing roles in reproductive aging.</p
Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome
One of the hallmarks of polycystic ovary syndrome (PCOS) is increased ovarian androgen secretion that contributes to the ovarian, hormonal, and metabolic features of this condition. Thecal cells from women with PCOS have an enhanced capacity for androgen synthesis. To investigate whether this propensity is a potential cause, rather than a consequence, of PCOS, we used an ovine prenatal androgenization model of PCOS and assessed ewes at 11 months of age. Pregnant Scottish Greyface ewes were administered 100 mg testosterone propionate (TP) or vehicle control twice weekly from d 62 to 102 of gestation, and female offspring (TP = 9, control = 5) were studied. Prenatal TP exposure did not alter ovarian morphology or cyclicity, or plasma androgen, estrogen, and gonadotropin concentrations, at this stage. However, follicle function was reprogrammed in vivo with increased proportions of estrogenic follicles (P <0.05) in the TP-exposed cohort. Furthermore, in vitro the thecal cells of follicles (>4 mm) secreted more LH-stimulated androstenedione after prenatal androgenization (P <0.05), associated with increased basal expression of thecal StAR (P <0.01), CYP11A (P <0.05), HSD3B1 (P <0.01), CYP17 (P <0.05), and LHR (P <0.05). This provides the first evidence of increased thecal androgenic capacity in the absence of a PCOS phenotype, suggesting a thecal defect induced during fetal life
- …
