119 research outputs found

    Redemption of an Interest in Real Estate

    Get PDF

    A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways).

    Get PDF
    Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest

    One Year Incidence of Infection in Pediatric Intestine Transplantation

    Get PDF
    Background: This study reports the infection rate, location of infection, and pathogen causing bacterial, fungal, or viral infections in intestine transplant recipients at a pediatric transplant center. Methods: Records from a pediatric center were reviewed for patients receiving an intestine transplant. Positive cultures and pathology reports were used to diagnose bacterial, fungal, and viral infections and also to determine location and infectious agent. Risk for infection was assessed based on liver or colon inclusion, and immunosuppression induction, as part of the intestine transplant. Results: During the study period 52 intestine transplants were performed on 46 patients. Bacterial, fungal, and viral infection rates were 90%, 25%, and 75%, respectively. Enterococcus (non-vancomycin resistant enterococci (VRE)) species were the most common pathogens and were isolated from 52% of patients. VRE was present in 12% of transplant recipients. Candida species were the most common fungal pathogens (23% of patients). Respiratory viral infections were common (44%) and cytomegalovirus infection rate was 17%. Common sites of infection were bloodstream, urinary, and upper respiratory tract. Colon and liver inclusion in the transplant graft was not associated with increased risk of infection, nor was addition of rituximab to the immunosuppression induction protocol. Conclusion: Post-intestine transplant infections are ubiquitious in the pediatric population, including high rates of infection from bacterial, viral and fungal sources. Inclusion of the liver and/or colon as a component of the transplant graft did not appear to greatly impact the infectious risk. Adding rituximab to the immunosuppression induction protocol did not impact on infectious risk

    Post‐intestine transplant graft‐versus‐host disease: Associated with inclusion of a liver graft and with a high mortality risk

    Get PDF
    Introduction This study reports the incidence, anatomic location, and outcomes of graft‐versus‐host disease (GVHD) at a single active intestine transplant center. Methods Records were reviewed for all patients receiving an intestine transplant from 2003 to 2015. Pathology reports and pharmacy records were reviewed to establish the diagnosis, location, and therapeutic interventions for GVHD. Results A total of 236 intestine transplants were performed during the study period, with 37 patients (16%) developing GVHD. The median time to onset of disease was 83 days, with 89% of affected patients diagnosed in the first year post‐transplant. Mortality for affected patients was 54% in the one‐year after GVHD diagnosis. Skin lesions were the most common manifestation of GVHD. Other sites of disease included lungs, bone marrow, oral mucosa, large intestine, and brain. The incidence of GVHD was 16% in adult patients, and slightly lower in pediatric recipients (13%). In adults, increasing graft volume (isolated versus multi‐organ) and liver inclusion were associated with increasing risk of GVHD, though this was not seen in pediatric patients. Conclusion Overall, 16% of intestine transplant recipients developed GVHD. GVHD is associated with high mortality, and disease in the lungs, brain, and bone marrow was universally fatal

    Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies.</p> <p>Results</p> <p>Sequences from ultraviolet-sensitive (<it>UVRh</it>), blue-sensitive (<it>BRh</it>), and long-wavelength sensitive (<it>LWRh</it>) opsins,<it>EF-1Ξ± </it>and <it>COI </it>were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both <it>BRh </it>and <it>LWRh </it>are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of <it>BRh </it>and <it>LWRh </it>sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly <it>Danaus plexippus </it>and the queen <it>D. gilippus </it>(15.3–35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic <it>Limenitis archippus </it>and red-spotted purple <it>L. arthemis </it>(4.7–13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies <it>Heliconius erato </it>and <it>H. melpomene </it>(13.5–26.1 Mya). Our family-level results are congruent with recent estimates found in the literature and indicate an age of 84–113 million years for the divergence of all butterfly families.</p> <p>Conclusion</p> <p>These results are consistent with diversification of the butterfly families following the radiation of angiosperms and suggest that some classes of opsin genes may be usefully employed for both phylogenetic reconstruction and divergence time estimation.</p

    A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection)

    Get PDF
    Neurocognitive deficits remain a significant source of morbidity in survivors of cardiac arrest. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following global cerebral ischemia associated with cardiac arrest. The search was limited to investigational therapies that were implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation in studies that included assessment of impact on neurologic outcome. Given that complex pathophysiology underlies global brain hypoxic ischemia following cardiac arrest, neuroprotective strategies targeting multiple stages of neuropathologic cascades should promise to improve survival and neurologic outcomes in cardiac arrest victims. In Part II of this review, we discuss several approaches that can provide comprehensive protection against global brain injury associated with cardiac arrest, by modulating multiple targets of neuropathologic cascades. Pharmaceutical approaches include adenosine and growth factors/hormones including brain-derived neurotrophic factor, insulin-like growth factor-1 and glycine-proline-glutamate, granulocyte colony stimulating factor and estrogen. Preclinical studies of these showed some benefit but were inconclusive in models of global brain injury involving systemic ischemia. Several medical gases that can mediate neuroprotection have been evaluated in experimental settings. These include hydrogen sulfide, hyperbaric oxygen and molecular hydrogen. Hyperbaric oxygen and molecular hydrogen showed promising results; however, further investigation is required prior to clinical application of these agents in cardiac arrest patients

    Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    Get PDF
    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation

    Spt2p Defines a New Transcription-Dependent Gross Chromosomal Rearrangement Pathway

    Get PDF
    Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability

    microRNA-Mediated Messenger RNA Deadenylation Contributes to Translational Repression in Mammalian Cells

    Get PDF
    Animal microRNAs (miRNAs) typically regulate gene expression by binding to partially complementary target sites in the 3β€² untranslated region (UTR) of messenger RNA (mRNA) reducing its translation and stability. They also commonly induce shortening of the mRNA 3β€² poly(A) tail, which contributes to their mRNA decay promoting function. The relationship between miRNA-mediated deadenylation and translational repression has been less clear. Using transfection of reporter constructs carrying three imperfectly matching let-7 target sites in the 3β€² UTR into mammalian cells we observe rapid target mRNA deadenylation that precedes measureable translational repression by endogenous let-7 miRNA. Depleting cells of the argonaute co-factors RCK or TNRC6A can impair let-7-mediated repression despite ongoing mRNA deadenylation, indicating that deadenylation alone is not sufficient to effect full repression. Nevertheless, the magnitude of translational repression by let-7 is diminished when the target reporter lacks a poly(A) tail. Employing an antisense strategy to block deadenylation of target mRNA with poly(A) tail also partially impairs translational repression. On the one hand, these experiments confirm that tail removal by deadenylation is not strictly required for translational repression. On the other hand they show directly that deadenylation can augment miRNA-mediated translational repression in mammalian cells beyond stimulating mRNA decay. Taken together with published work, these results suggest a dual role of deadenylation in miRNA function: it contributes to translational repression as well as mRNA decay and is thus critically involved in establishing the quantitatively appropriate physiological response to miRNAs
    • …
    corecore