187 research outputs found

    AMERTA 8

    Get PDF

    Challenges in the Control and Elimination of Plasmodium vivax Malaria

    Get PDF
    The human malaria parasite Plasmodium vivax imposes unique challenges to its control and elimination. Primary among those is the hypnozoite reservoir of infection in endemic communities. It is the dominant source of incident malaria and exceedingly difficult to attack due to both inability to diagnose latent carriers and the potentially life-threatening toxicity of primaquine in patients with an inborn deficiency of G6PD, the only therapeutic option against hypnozoites. Large segments of endemic populations are not eligible for primaquine, and alternative strategies for managing the threat of relapse in any group have not been optimized or validated. Association of risk of primaquine failure against latent P. vivax with impaired alleles of P450 2D6 exacerbates the substantial pool of primaquine ineligibles. Resistance to chloroquine against acute P. vivax malaria commonly occurs; alternative therapies like ACTs are effective but seldom evaluated as a partner drug to primaquine in the essential radical cure. Many of the Anopheles mosquito vector of P. vivax in South and Southeast Asia, where >90% of infections occur, thrive in a diversity of habitats and exhibit wide ranges of feeding and breeding behavior. This chapter explores many of these challenges and possible approaches in controlling and eliminating endemic vivax malaria

    Diversity of Anopheles mosquitoes in Binh Phuoc and Dak Nong Provinces of Vietnam and their relation to disease

    Get PDF
    © 2014 Ngo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Entomological Surveillance as a Cornerstone of Malaria Elimination: A Critical Appraisal

    Get PDF
    Global capacity for developing new insecticides and vector control products, as well as mathematical models to evaluate their likely impact upon malaria transmission has greatly improved in recent years. Given that a range of new vector control products are now emerging that target a greater diversity of adult mosquito behaviours, it should soon be feasible to effectively tackle a broader range of mosquito species and settings. However, the primary obstacles to further progress towards more effective malaria vector control are now paucities of routine programmatic entomological surveillance, and capacity for data processing, analysis and interpretation in endemic countries. Well-established entomological methods need to be more widely utilized for routine programmatic surveillance of vector behaviours and insecticide susceptibility, the effectiveness of vector control products and processes, and their impacts on mosquito populations. Such programmatic data may also be useful for simulation analyses of mosquito life histories, to identify opportunities for pre-emptively intervening early in the life cycle of mosquitoes, rather than targeting transmission events occurring when they are older. Current obstacles to more effective utilization, archiving and sharing of entomological data largely centre around global inequities of analytical capacity. These prohibitive and unfair imbalances can be addressed by reorienting funding schemes to emphasize south-centred collaborations focused on malaria-endemic countries

    Resolving the ancestry of Austronesian-speaking populations

    Get PDF
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion

    Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of <it>Anopheles </it>vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics.</p> <p>Methods</p> <p>Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with <it>Plasmodium falciparum </it>determined.</p> <p>Results</p> <p>Prevalence of febrile illness with <it>P. falciparum </it>was highest among the 5 to 17 year olds (62.4%) while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day). Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of <it>Anopheles arabiensis</it>, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of <it>A. arabiensis </it>adult females were infected with <it>P. falciparum </it>sporozoites in the rainy season.</p> <p>Conclusions</p> <p>Malaria in Kakuma refugee camp was due mainly to infection with <it>P. falciparum </it>and showed a hyperendemic age-prevalence profile, in an area with otherwise low risk of malaria given prevailing climate. Transmission was sustained by <it>A. arabiensis</it>, whose populations were facilitated by installation of man-made water distribution and catchment systems.</p

    Malaria vectors of Timor-Leste

    Get PDF
    Background: The island of Timor lies at the south-eastern edge of Indonesia on the boundary of the Oriental and Australian faunal regions. The country of Timor-Leste, which occupies the eastern part of the island, is malarious but anopheline faunal surveys and malaria vector incrimination date back to the 1960 s. Over the last decade the malaria vectors of south-east Asia and the south-west Pacific have been intensely studied using molecular techniques that can confirm identification within complexes of isomorphic species. The aim of this study is to accurately identify the Anopheles fauna of Timor-Leste using these techniques
    corecore