30 research outputs found

    Extraformational sediment recycling on Mars

    Get PDF
    Extraformational sediment recycling (old sedimentary rock to new sedimentary rock) is a fundamental aspect of Earth's geological record; tectonism exposes sedimentary rock, whereupon it is weathered and eroded to form new sediment that later becomes lithified. On Mars, tectonism has been minor, but two decades of orbiter instrument-based studies show that some sedimentary rocks previously buried to depths of kilometers have been exposed, by erosion, at the surface. Four locations in Gale crater, explored using the National Aeronautics and Space Administration's Curiosity rover, exhibit sedimentary lithoclasts in sedimentary rock: At Marias Pass, they are mudstone fragments in sandstone derived from strata below an erosional unconformity; at Bimbe, they are pebble-sized sandstone and, possibly, laminated, intraclast-bearing, chemical (calcium sulfate) sediment fragments in conglomerates; at Cooperstown, they are pebble-sized fragments of sandstone within coarse sandstone; at Dingo Gap, they are cobble-sized, stratified sandstone fragments in conglomerate derived from an immediately underlying sandstone. Mars orbiter images show lithified sediment fans at the termini of canyons that incise sedimentary rock in Gale crater; these, too, consist of recycled, extraformational sediment. The recycled sediments in Gale crater are compositionally immature, indicating the dominance of physical weathering processes during the second known cycle. The observations at Marias Pass indicate that sediment eroded and removed from craters such as Gale crater during the Martian Hesperian Period could have been recycled to form new rock elsewhere. Our results permit prediction that lithified deltaic sediments at the Perseverance (landing in 2021) and Rosalind Franklin (landing in 2023) rover field sites could contain extraformational recycled sediment.With funding from the Spanish government through the "MarĂ­a de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    PEDIA: prioritization of exome data by image analysis.

    Get PDF
    PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars

    Get PDF
    International audienceThe ChemCam instrument package on the Curiosity rover was used to characterize distinctive raised ridges in the Sheepbed mudstone, Yellowknife Bay formation, Gale Crater. The multilayered, fracture-filling ridges are more resistant to erosion than the Sheepbed mudstone rock in which they occur. The bulk average composition of the raised ridges is enriched in MgO by 1.2-1.7 times (average of 8.3-11.4 wt %; single-shot maximum of 17.0 wt %) over that of the mudstone. Al2O3 is anticorrelated with MgO, while Li is somewhat enriched where MgO is highest. Some ridges show a variation in composition with different layers on a submillimeter scale. In particular, the McGrath target shows similar high-MgO resistant outer layers and a low-MgO, less resistant inner layer. This is consistent with the interpretation that the raised ridges are isopachous fracture-filling cements with a stratigraphy that likely reveals changes in fluid composition or depositional conditions over time. Overall, the average composition of the raised ridges is close to that of a Mg- and Fe-rich smectite, or saponite, which may also be the main clay mineral constituent of the host mudstone. These analyses provide evidence of diagenesis and aqueous activity in the early postdepositional history of the Yellowknife Bay formation, consistent with a low salinity to brackish fluid at near-neutral or slightly alkaline pH. The fluids that circulated through the fractures likely interacted with the Sheepbed mudstone and (or) other stratigraphically adjacent rock units of basaltic composition and leached Mg from them preferentially

    Insights into the Sedimentary Record and Processes of the Western Delta of Jezero crater (Mars) as observed by the Mars 2020 rover Perseverance. (Invited)

    No full text
    International audienceSince its landing in Jezero crater in February 2021, the western delta of Jezero has been one of the main targets for the Perseverance rover to explore and sample sedimentary rocks that lead us to better understand the environmental evolution of the region, and could host traces of past biosignatures.During the first year, the rover explored the floor of Jezero crater, focusing on aqueously altered igneous rocks. It also provided the opportunity to remotely observe the main delta front and its remnants (e.g., the Kodiak butte). This allowed us to distinguish several beds of sandstones (with local occurrences of boulders up to 30 cm) arranged into bottomsets, foresets and topsets morphologies. This tripartite geometry and steep slopes of foresets are characteristic of a Gilbert-type delta, formed by the deposition of fluvial sediments prograding into a standing body of water, here a paleolake whose level can be constrained by the transition from the foresets to topsets. Massive beds of boulder conglomerates (with boulders up to 1.5 m) have also been observed at or close to the top of many locations along the delta’s front, hinting at a transition to higher energy flows. Collectively, these elements argue for a polyphase complex depositional history of the delta through time.The toe of the current delta front was reached by the rover on Sol 422 (April 2022) when Perseverance arrived at the Enchanted Lake outcrop, at the base of the southeastern end of the promontory informally named Cape Nukshak on the distal end of the delta. The first in-place sedimentary rocks that were observed were a succession of thinly-laminated medium/coarse sandstones and mudstones. Then, Perseverance pursued its route towards the delta and started its ascension at Hawksbill Gap to assess the first half of the lower delta succession. Strata at the base of Hawksbill Gap are mostly composed of fine to coarse-grained rocks ranging from mudstones to granule conglomerates, displaying planar to low-angle cross-stratifications.These fine-grained detrital rocks are likely to have been deposited by fluvial to deltaic processes. There, the rover collected the first sets of paired sedimentary rock samples (coarse sandstone to micro-conglomerate) that will represent the fine- and coarse-grained lower delta succession once returned to Earth

    Insights into the Sedimentary Record and Processes of the Western Delta of Jezero crater (Mars) as observed by the Mars 2020 rover Perseverance. (Invited)

    No full text
    International audienceSince its landing in Jezero crater in February 2021, the western delta of Jezero has been one of the main targets for the Perseverance rover to explore and sample sedimentary rocks that lead us to better understand the environmental evolution of the region, and could host traces of past biosignatures.During the first year, the rover explored the floor of Jezero crater, focusing on aqueously altered igneous rocks. It also provided the opportunity to remotely observe the main delta front and its remnants (e.g., the Kodiak butte). This allowed us to distinguish several beds of sandstones (with local occurrences of boulders up to 30 cm) arranged into bottomsets, foresets and topsets morphologies. This tripartite geometry and steep slopes of foresets are characteristic of a Gilbert-type delta, formed by the deposition of fluvial sediments prograding into a standing body of water, here a paleolake whose level can be constrained by the transition from the foresets to topsets. Massive beds of boulder conglomerates (with boulders up to 1.5 m) have also been observed at or close to the top of many locations along the delta’s front, hinting at a transition to higher energy flows. Collectively, these elements argue for a polyphase complex depositional history of the delta through time.The toe of the current delta front was reached by the rover on Sol 422 (April 2022) when Perseverance arrived at the Enchanted Lake outcrop, at the base of the southeastern end of the promontory informally named Cape Nukshak on the distal end of the delta. The first in-place sedimentary rocks that were observed were a succession of thinly-laminated medium/coarse sandstones and mudstones. Then, Perseverance pursued its route towards the delta and started its ascension at Hawksbill Gap to assess the first half of the lower delta succession. Strata at the base of Hawksbill Gap are mostly composed of fine to coarse-grained rocks ranging from mudstones to granule conglomerates, displaying planar to low-angle cross-stratifications.These fine-grained detrital rocks are likely to have been deposited by fluvial to deltaic processes. There, the rover collected the first sets of paired sedimentary rock samples (coarse sandstone to micro-conglomerate) that will represent the fine- and coarse-grained lower delta succession once returned to Earth

    SURFACE EXPRESSION AND GEOMETRIES OF DELTAIC DEPOSITS OF JEZERO WESTERN FAN TOP (MARS)

    No full text
    International audienceBetween February-September 2023, the Mars 2020 Perseverance rover explored the upper exposed surface of the western Jezero sedimentary fan. The rover’s exploration focused primarily on the so-called “curvilinear unit.” This unit was initially defined in orbiter images [1, 2] by the presence of repetitive, arcuate decameter-scale bedsets (Fig. 1). These morphologies were first interpreted to be fluvial in origin (likely meanders [2]). However, ground-based inspection from the rover’s perspective tends to show us that they more than likely originate from deltaic depositional processes, in line with other observations made by Perseverance on the fan front [e.g., 3; 4]

    SURFACE EXPRESSION AND GEOMETRIES OF DELTAIC DEPOSITS OF JEZERO WESTERN FAN TOP (MARS)

    No full text
    International audienceBetween February-September 2023, the Mars 2020 Perseverance rover explored the upper exposed surface of the western Jezero sedimentary fan. The rover’s exploration focused primarily on the so-called “curvilinear unit.” This unit was initially defined in orbiter images [1, 2] by the presence of repetitive, arcuate decameter-scale bedsets (Fig. 1). These morphologies were first interpreted to be fluvial in origin (likely meanders [2]). However, ground-based inspection from the rover’s perspective tends to show us that they more than likely originate from deltaic depositional processes, in line with other observations made by Perseverance on the fan front [e.g., 3; 4]

    SURFACE EXPRESSION AND GEOMETRIES OF DELTAIC DEPOSITS OF JEZERO WESTERN FAN TOP (MARS)

    No full text
    International audienceBetween February-September 2023, the Mars 2020 Perseverance rover explored the upper exposed surface of the western Jezero sedimentary fan. The rover’s exploration focused primarily on the so-called “curvilinear unit.” This unit was initially defined in orbiter images [1, 2] by the presence of repetitive, arcuate decameter-scale bedsets (Fig. 1). These morphologies were first interpreted to be fluvial in origin (likely meanders [2]). However, ground-based inspection from the rover’s perspective tends to show us that they more than likely originate from deltaic depositional processes, in line with other observations made by Perseverance on the fan front [e.g., 3; 4]
    corecore