205 research outputs found
The discovery of the Younger Dryas, and comments on the current meaning and usage of the term
The Younger Dryas (YD) cold event was discovered in Denmark by Hartz and Mithers in 1904 and the term coined by Hartz in 1912. It was identified as a lacustrine clay bed containing plant macrofossils of an Arctic flora, including Dryas octopetala, and lying between Allerød and Holocene gyttjas containing a warmer flora with birch trees. The YD is unique in the sense that it is the largest and most abrupt climate change on Earth since the Last Glacial Maximum and thus within the reach of radiocarbon dating. Yet, I consider it is part of a regular Dansgaard-Oeschger event. The term has been used for a climate event and for lithostratigraphical, biostratigraphical and several other stratigraphical units. I prefer using it as a geochronological and chronostratigraphical unit, i.e. that the YD represents a specific period of geological time and the rocks and sediments formed during this period. In the type area of southern Scandinavia, the YD chron represents the age and duration of the cold event.publishedVersio
Ice-free conditions in Novaya Zemlya 35,000 to 30,000 cal years BP, as indicated by radiocarbon ages and amino acid racemization evidence from marine molluscs
Novaya Zemlya was covered by the eastern part of the Barents-Kara ice sheet during the glacial maximum of marine isotope stage 2 (MIS 2). We obtained (14)C ages on 37 samples of mollusc shells from various sites on the islands. Most samples yielded ages in the range of 48-26 (14)C Ky. Such old samples are sensitive to contamination by young (14)C, and therefore their reliability was assessed using replicate analyses and amino acid geochronology. The extent of aspartic acid racemization (Asp D/L) indicates that many of the (14)C ages are correct, whereas some are minimum ages only. The results indicate that a substantial part of Novaya Zemlya was ice-free about 35-27 (14)C Kya, and probably even earlier. Corresponding shorelines up to > 140 m a.s.l. indicate a large Barents-Kara ice sheet during early MIS 3. These results are consistent with findings from Svalbard and northern Russia: in both places a large MIS 4/3 Barents-Kara ice sheet is postulated to have retreated about 50 Kya, followed by an ice-free interstadial that lasted until up to ca. 25 Kya. The duration of the MIS 2 glaciation in Novaya Zemlya was calculated by applying the D/L values to a kinetic equation for Asp racemization. This indicates that the islands were ice covered for less than 3000 years if the basal temperature was 0(o)C, and for less than 10 000 years if it was -5 degrees C
Recommended from our members
Early break-up of the Norwegian Channel Ice Stream during the Last Glacial Maximum
We present 18 new cosmogenic ¹⁰Be exposure ages that constrain the breakup time of the Norwegian Channel Ice Stream (NCIS) and the initial retreat of the Scandinavian Ice Sheet from the Southwest coast of Norway following the Last Glacial Maximum (LGM). Seven samples from glacially transported erratics on the island Utsira, located in the path of the NCIS about 400 km up-flow from the LGM ice front position, yielded an average ¹⁰Be age of 22.0 ± 2.0 ka. The distribution of the ages is skewed with the 4 youngest all within the range 20.2–20.8 ka. We place most confidence on this cluster of ages to constrain the timing of ice sheet retreat as we suspect the 3 oldest ages have some inheritance from a previous ice free period. Three additional ages from the adjacent island Karmøy provided an average age of 20.9 ± 0.7 ka, further supporting the new timing of retreat for the NCIS. The ¹⁰Be ages from Utsira and Karmøy suggest that the ice stream broke up about 2000 years earlier than the age assignment based on ¹⁴C ages on foraminifera and molluscs from marine sediment cores. We postulate that the Scandinavian Ice Sheet flowed across the Norwegian Channel to Denmark and onto the North Sea plateau during early phases of the LGM. When the NCIS started to operate this ice supply to the North Sea was cut off and the fast flow of the NCIS also led to a lowering of the ice surface along the Norwegian Channel and thereby drawdown of the entire ice sheet. This facilitated rapid calving of the ice front in the North Sea and we reconstruct a large open bay across the entire northern North Sea by ∼20 ka based on our ¹⁰Be ages in the east and radiocarbon ages from marine cores in the west. Additional ¹⁰Be ages show that the mainland slightly east of the islands Utsira and Karmøy remained ice covered until about 16 ka, indicating almost no net ice-margin retreat for the 4000 years between 20 and 16 ka. After 16 ka the ice margin retreated quickly up-fjord
Deglaciation of the Scandinavian Ice Sheet and a Younger Dryas ice cap in the outer Hardangerfjorden area, southwestern Norway
Understanding past responses of ice sheets to climate change provides an important long-term context for observations of present day, and projected future, ice-sheet change. In this work, we reconstruct the deglaciation of the marine-terminating western margin of the Scandinavian Ice Sheet in the outer Hardangerfjorden area of southwestern Norway, following the Last Glacial Maximum (LGM) until the start of the Holocene. We base our interpretations on a combination of geomorphological mapping using high-resolution (LiDAR) terrain models, 68 new cosmogenic nuclide 10Be exposure ages and radiocarbon-dated lake sediment cores, supported by the stratigraphic position of the 12.1 ka Vedde Ash. We show that even the highest mountain summits in the area (˜1200–1400 m a.s.l.) were ice-covered during the LGM, thus settling debates concerning the Scandinavian Ice Sheet thickness in this region. These summits emerged as nunataqs through the ice sheet about 22–18 ka, potentially owing to upstream ice thinning caused by the break-up and retreat of the Norwegian Channel Ice Stream. Following the break-up of the Norwegian Channel Ice Stream, the ice margin seemingly stabilized at the outermost coast for 3500–5500 years before the mouth of Hardangerfjorden became ice free at c. 14.5 ka. Subsequently, during the Bølling and Allerød periods, the ice sheet retreated rapidly into the inner parts of Hardangerfjorden before a major ice sheet re-advance during the Younger Dryas. We identify and reconstruct a sizeable, independent ice cap on the Ulvanosa mountain massif during the Younger Dryas (YD), a massif that earlier was mapped as covered by the Scandinavian Ice Sheet during the YD. We also document ice-free areas that are more extensive than previously thought between Hardangerfjorden and Matersfjorden during the YD.publishedVersio
Last interglacial sea-level proxies in the glaciated Northern Hemisphere
Because global sea level during the last interglacial (LIG; 130–115 ka) was higher than today, the LIG is a useful approximate analogue for improving predictions of future sea-level rise. Here, we synthesize sea-level proxies for the LIG in the glaciated Northern Hemisphere for inclusion in the World Atlas of Last Interglacial Shorelines (WALIS) database. We describe 82 sites from Russia, northern Europe, Greenland and North America from a variety of settings, including boreholes, riverbank exposures and along coastal cliffs. Marine sediments at these sites were constrained to the LIG using a variety of radiometric methods (radiocarbon, uranium–thorium, potassium–argon), non-radiometric methods (amino acid dating, luminescence methods, electron spin resonance, tephrochronology) as well as various stratigraphic and palaeo-environmental approaches. In general, the sites reported in this paper do not offer constraint on the global LIG highstand, but rather evidence of glacial isostatic adjustment (GIA)-influenced sea-level positions following the Marine Isotope Stage 6 glaciation (MIS 6; 191–130 ka). Most of the proxies suggest that sea level was much higher during the LIG than at the present time. Moreover, many of the sites show evidence of regression due to sea-level fall (owing to glacial isostatic uplift), and some also show fluctuations that may reflect regrowth of continental ice or increased influence of the global sea-level signal. In addition to documenting LIG sea-level sites in a large swath of the Northern Hemisphere, this compilation is highly relevant for reconstructing the size of MIS 6 ice sheets through GIA modelling. The database is available at https://doi.org/10.5281/zenodo.5602212 (Dalton et al., 2021).publishedVersio
Recommended from our members
A 10Be chronology of south-western Scandinavian Ice Sheet history during the Lateglacial period
We present 34 new cosmogenic 10Be exposure ages that constrain the Lateglacial (Bølling–Preboreal) history of the Scandinavian Ice Sheet in the Lysefjorden region, south-western Norway. We find that the classical Lysefjorden moraines, earlier thought to be entirely of Younger Dryas age, encompass three adjacent moraines attributed to at least two ice sheet advances of distinctly different ages. The 10Be age of the outermost moraine (14.0 ± 0.6 ka; n = 4) suggests that the first advance is of Older Dryas age. The innermost moraine is at least 2000 years younger and was deposited near the end of the Younger Dryas (11.4 ± 0.4 ka; n = 7). After abandonment of the innermost Lysefjorden Moraine, the ice front receded quickly towards the head of the fjord, where recession was interrupted by an advance that deposited the Trollgaren Moraine at 11.3 ± 0.9 ka (n = 5). 10Be ages from the inboard side of the Trollgaren Moraine suggest final retreat by 10.7 ± 0.3 ka (n = 7). The late culmination of the Younger Dryas advance contrasts with other sectors of the Scandinavian Ice Sheet where the margin appears to have culminated earlier during the Younger Dryas stadial, followed by retreat during the middle and late part of the Younger Dryas
Did the Eurasian ice sheets melt completely in early Marine Isotope Stage 3? New evidence from Norway and a synthesis for Eurasia
We describe glaci-lacustrine sediments buried under thick tills in Folldalen, south-east Norway, a site located close to the former centre of the Scandinavian Ice Sheet. Thus, the location implies that the ice sheet had melted when the sediments were deposited. The exposed ground was occupied by arctic vegetation. The best age estimate from 20 quartz luminescence dates is 55.6 ± 4.6 ka. Due to possible incomplete bleaching, an age in the younger part of the time range is most probable. We conclude that the Scandinavian Ice Sheet melted almost completely away early in Marine Isotope Stage (MIS) 3. Our review shows that the other Eurasian ice sheets also disappeared in that period. In north-western Germany, there were forests, containing warmth-demanding trees early in MIS 3, indicating a summer climate only slightly cooler than at present, thus supporting the evidence that the adjacent ice sheets had melted. The melting of the Eurasian ice sheets contributed to 50–100% of the sea-level rise from MIS 4 to MIS 3, implying that the much larger North American ice sheets did not melt much. In contrast, the Eurasian ice sheets contributed only about 30% to the sea-level drop from MIS 3 to MIS 2, meaning that the North American ice sheets during that period expanded strongly.publishedVersio
High‐resolution chronology of 24 000‐year long cores from two lakes in the Polar Urals, Russia, correlated with palaeomagnetic inclination records with a distinct event about 20 000 years ago
Based on radiocarbon dating, a tephra horizon, varve counts and palaeomagnetism, detailed age models covering the last ~24 k cal a bp, have been developed for the stratigraphy in the lakes Bolshoye Shchuchye and Maloye Shchuchye in the Polar Ural Mountains, Russia. The inclination curves from these lakes show nearly identical palaeomagnetic secular variations in the studied cores from both lakes, allowing for a precise correlation between the cores. A large and very distinct inclination deviation, named the Bolshoye Shchuchye Event, was identified in all cores retrieved from both lakes. It lasted over a period of 1245 years, from 20 470 to 19 225 cal a bp. The well-dated palaeomagnetic inclination graph offers a new possibility to correlate archives in this part of the Arctic for the last ~24 k cal a bp, probably also over longer distances. The sedimentation rate shows the same trend in all cores from both lakes, including high input during the Last Glacial Maximum and gradually lowering after ~18 k cal a bp to lower and stable Holocene values.publishedVersio
- …