166 research outputs found

    Absence of boron aggregates in superconducting silicon confirmed by atom probe tomography

    Full text link
    Superconducting boron-doped silicon films prepared by gas immersion laser doping (GILD) technique are analyzed by atom probe tomography. The resulting three-dimensional chemical composition reveals that boron atoms are incorporated into crystalline silicon in the atomic percent concentration range, well above their solubility limit, without creating clusters or precipitates at the atomic scale. The boron spatial distribution is found to be compatible with local density of states measurements performed by scanning tunneling spectroscopy. These results, combined with the observations of very low impurity level and of a sharp two-dimensional interface between doped and undoped regions show, that the Si:B material obtained by GILD is a well-defined random substitutional alloy endowed with promising superconducting properties.Comment: 4 page

    Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing

    Get PDF
    International audienceHeavy doping of Ge is crucial for several advanced micro-and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 X 10(20) cm(-3) by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 degrees C reaching an active concentration of similar to 4 x 10(19) cm(-3). No significant As diffusion is detected up to 450 degrees C, where the As activation decreases further to similar to 3 x 10(19) cm(-3). The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge

    CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    No full text
    International audienceA two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement

    Impact of directional walk on atom probe microanalysis

    Get PDF
    In the atom probe microanalysis of steels, inconsistencies in the measured compositions of solutes (C, N) have often been reported, as well as their appearance as molecular ions. Here we propose that these issues might arise from surface migration of solute atoms over the specimen surface. Surface migration of solutes is evidenced by field-ion microscopy observations, and its consequences on atom probe microanalysis are detailed for a wide range of solute (P, Si, Mn, B, C and N). It is proposed that directional walk driven by field gradients over the specimen surface and thermally activated is the prominent effect

    Probing the dynamics of quasicrystal growth using synchrotron live imaging

    Get PDF
    The dynamics of quasicrystal growth remains an unsolved problem in condensed matter. By means of synchrotron live imaging, facetted growth proceeding by the tangential motion of ledges at the solid-melt interface is clearly evidenced all along the solidification of icosahedral AlPdMn quasicrystals. The effect of interface kinetics is significant so that nucleation and free growth of new facetted grains occur in the melt when the solidification rate is increased. The evolution of these grains is explained in details, which reveals the crucial role of aluminum rejection, both in the poisoning of grain growth and driving fluid flow

    B diffusion in implanted Ni2Si and NiSi layers

    Get PDF
    B diffusion in implanted Ni2Si and NiSi layers has been studied using secondary ion mass spectrometry, and compared to B redistribution profiles obtained after the reaction of a Ni layer on a B-implanted Si(001) substrate, in same annealing conditions (400-550 degrees C). B diffusion appears faster in Ni2Si than in NiSi. The B solubility limit is larger than 10(21) atom cm(-3) in Ni2Si, while it is similar to 3x10(19) atom cm(-3) in NiSi. The solubility limit found in NiSi is in agreement with the plateau observed in B profiles measured in NiSi after the reaction of Ni on B-implanted Si

    Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    Get PDF
    International audienceDuring casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements

    Электронный компас

    Get PDF
    Разработка электронного компаса на основе датчиков: магнитометра, акселерометра и гироскопа. Данное устройство будет определять направление на северный магнитный полюс как при горизонтальном положении, так и при отклонениях от горизонтальной плоскостиDevelopment of electronic compass based on sensors: magnetometer, accelerometer and gyroscope. This device will determine the direction to the North magnetic pole both in the horizontal position and in deviations from the horizontal plan

    Nucleation of boron clusters in implanted silicon

    No full text
    International audienceLaser-assisted wide angle tomographic atom probe was employed to investigate clustering of boron in highly doped implanted silicon ((11)B, 10 keV, 5x10(15) atoms/cm(2)) at room temperature and at different annealing temperatures (600 degrees C/h, 800 degrees C/h, and 900 degrees C/5 h). The implantation profile shows a maximum of 10(21) atoms/cm(3) at a distance close to 30 nm. The evolution of microstructural features (cluster and matrix composition, cluster size, molar fraction of clusters, and density) was studied as a function of depth. As expected, the number density of clusters shows a maximum (2x10(18) and 1.7x10(18) cm(-3) for 600 and 800 degrees C, respectively) at the implantation peak where the driving force for nucleation is the highest. As expected, the overall number density of clusters decreases when increasing temperature (lower supersaturation). The boron concentration in clusters as well as that in the parent boron-depleted phase was found to follow the same trend as the implantation profile. The boron level in clusters was found higher close to the implantation peak (8.9 at. % at 600 degrees C, 12 at. % at 800 degrees C). The increasing concentration of boron in clusters as a function of temperature suggests the clusters are metastable nuclei of a transient phase, the composition approaches that of equilibrium borides as given by phase diagram (SiB(3)). This equilibrium boride SiB(3) is detected after a heat treatment at 900 degrees C for 5 h. Experiments were confronted to predictions as given by classical nucleation theory. Reasonable agreement was observed
    corecore