583 research outputs found

    Clones in Graphs

    Full text link
    Finding structural similarities in graph data, like social networks, is a far-ranging task in data mining and knowledge discovery. A (conceptually) simple reduction would be to compute the automorphism group of a graph. However, this approach is ineffective in data mining since real world data does not exhibit enough structural regularity. Here we step in with a novel approach based on mappings that preserve the maximal cliques. For this we exploit the well known correspondence between bipartite graphs and the data structure formal context (G,M,I)(G,M,I) from Formal Concept Analysis. From there we utilize the notion of clone items. The investigation of these is still an open problem to which we add new insights with this work. Furthermore, we produce a substantial experimental investigation of real world data. We conclude with demonstrating the generalization of clone items to permutations.Comment: 11 pages, 2 figures, 1 tabl

    Solvability of Variational Inequalities on Hilbert Lattices

    Full text link

    Knowledge-based gene expression classification via matrix factorization

    Get PDF
    Motivation: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considered indicative of underlying regulatory processes. They can as well be applied to the classification of gene expression datasets by grouping samples into different categories for diagnostic purposes or group genes into functional categories for further investigation of related metabolic pathways and regulatory networks. Results: In this study we focus on unsupervised matrix factorization techniques and apply ICA and sparse NMF to microarray datasets. The latter monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that these tools are able to identify relevant signatures in the deduced component matrices and extract informative sets of marker genes from these gene expression profiles. The methods rely on the joint discriminative power of a set of marker genes rather than on single marker genes. With these sets of marker genes, corroborated by leave-one-out or random forest cross-validation, the datasets could easily be classified into related diagnostic categories. The latter correspond to either monocytes versus macrophages or healthy vs Niemann Pick C disease patients.Siemens AG, MunichDFG (Graduate College 638)DAAD (PPP Luso - Alem˜a and PPP Hispano - Alemanas

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    From error bounds to the complexity of first-order descent methods for convex functions

    Get PDF
    This paper shows that error bounds can be used as effective tools for deriving complexity results for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit the interplay between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can show the equivalence between the two concepts for convex functions having a moderately flat profile near the set of minimizers (as those of functions with H\"olderian growth). A counterexample shows that the equivalence is no longer true for extremely flat functions. This fact reveals the relevance of an approach based on KL inequality. In a second stage, we show how KL inequalities can in turn be employed to compute new complexity bounds for a wealth of descent methods for convex problems. Our approach is completely original and makes use of a one-dimensional worst-case proximal sequence in the spirit of the famous majorant method of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide class of descent methods. As a byproduct of our study, we also provide new results for the globalization of KL inequalities in the convex framework. Our main results inaugurate a simple methodology: derive an error bound, compute the desingularizing function whenever possible, identify essential constants in the descent method and finally compute the complexity using the one-dimensional worst case proximal sequence. Our method is illustrated through projection methods for feasibility problems, and through the famous iterative shrinkage thresholding algorithm (ISTA), for which we show that the complexity bound is of the form O(qk)O(q^{k}) where the constituents of the bound only depend on error bound constants obtained for an arbitrary least squares objective with 1\ell^1 regularization

    Characterizations of Real Matrices of Monotone Kind

    Full text link

    Clustering problems in optimization models

    Full text link
    We discuss a variety of clustering problems arising in combinatorial applications and in classifying objects into homogenous groups. For each problem we discuss solution strategies that work well in practice. We also discuss the importance of careful modelling in clustering problems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44350/1/10614_2004_Article_BF00121636.pd
    corecore