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Abstract

This paper shows that error bounds can be used as effective tools for deriving complexity results
for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit
the interplay between error bounds and the Kurdyka- Lojasiewicz (KL) inequality. One can show the
equivalence between the two concepts for convex functions having a moderately flat profile near the set of
minimizers (as those of functions with Hölderian growth). A counterexample shows that the equivalence
is no longer true for extremely flat functions. This fact reveals the relevance of an approach based on
KL inequality. In a second stage, we show how KL inequalities can in turn be employed to compute new
complexity bounds for a wealth of descent methods for convex problems. Our approach is completely
original and makes use of a one-dimensional worst-case proximal sequence in the spirit of the famous
majorant method of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide
class of descent methods. As a byproduct of our study, we also provide new results for the globalization
of KL inequalities in the convex framework.

Our main results inaugurate a simple methodology: derive an error bound, compute the desingular-
izing function whenever possible, identify essential constants in the descent method and finally compute
the complexity using the one-dimensional worst case proximal sequence. Our method is illustrated
through projection methods for feasibility problems, and through the famous iterative shrinkage thresh-
olding algorithm (ISTA), for which we show that the complexity bound is of the form O(qk) where the
constituents of the bound only depend on error bound constants obtained for an arbitrary least squares
objective with ℓ1 regularization.
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of first-order methods, LASSO, compressed sensing.
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1 Overview and main results

A brief insight into the theory of error bounds. Since Hoffman’s celebrated result on error bounds
for systems of linear inequalities [36], the study of error bounds has been successfully applied to problems
in sensitivity, convergence rate estimation, and feasibility issues. In the optimization world, the first
natural extensions were made to convex functions by Robinson [59], Mangasarian [51], and Auslender-
Crouzeix [8]. However, the most striking discovery came years before in the pioneering works of  Lojasiewicz
[44, 45] at the end of the fifties: under a mere compactness assumption, the existence of error bounds for
arbitrary continuous semi-algebraic functions was provided. Despite their remarkable depth, these works
remained unnoticed by the optimization community during a long period (see [48]). At the beginning of
the nineties, motivated by numerous applications, many researchers started working along these lines, in
quest for quantitative results that could produce more effective tools. The survey of Pang [56] provides a
comprehensive panorama of results obtained around this time. The works of Luo [47, 48, 49] and Dedieu
[32] are also important milestones in the theory. The recent works [39, 41, 62, 40, 10] provide even stronger
quantitative results by using the powerful machinery of algebraic geometry or advanced techniques of
convex optimization.

A methodology for complexity of first-order descent methods. Let us introduce the concepts used
in this work and show how they can be arranged to devise a new and systematic approach to complexity.
Let H be a real Hilbert space, and let f : H → (−∞,+∞] be a proper lower-semicontinuous convex
function achieving its minimum min f so that argmin f 6= ∅. In its most simple version, an error bound is
an inequality of the form

ω
(

f(x) − min f
)

≥ dist(x, argmin f), (1)

where ω is an increasing function vanishing at 0 –called here the residual function–, and where x may
evolve either in the whole space or in a bounded set. Hölderian error bounds, which are very common in
practice, have a simple power form

f(x) − min f ≥ γ distp(x, argmin f),

with γ > 0, p ≥ 1 and thus ω(s) = ( 1γ s)
1

p . When functions are semi-algebraic on H = R
n and “regular” (for

instance, continuous), the above inequality is known to hold on any compact set [44, 45], a modern reference
being [15]. This property is known in real algebraic geometry under the name of  Lojasiewicz inequality.
However, since we work here mainly in the sphere of optimization and follow complexity purposes, we shall
refer to this inequality as to the  Lojasiewicz error bound inequality.

Once the question of computing constants and exponents (here γ and p) for a given minimization
problem is settled (see the fundamental works [49, 39, 10, 62]), it is natural to wonder whether these
concepts are connected to the complexity properties of first-order methods for minimizing f . Despite the
important success of the error bound theory in several branches of optimization, we are not aware of a solid
theory connecting the error bounds we consider (as defined in (1)), with the study of the complexity of
general descent methods. There are, however, several works connecting error bounds with the convergence
rates results of first-order methods (see e.g., [61, 50, 34, 53, 12, 28, 57]). See also the new and interesting
work [40] that provides a wealth of error bounds and some applications to convergence rate analysis. An
important fraction of these works involves “first-order error bounds”1 (see [48, 50]) that are different from
those we consider here.

1That is, involving inequalities of the type ‖∇f(x)‖ ≥ ω(dist(x, argmin f))
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Our answer to the connection between complexity and “zero-order error bounds” will partially come
from a related notion, also discovered by  Lojasiewicz and further developed by Kurdyka in the semi-
algebraic world: the  Lojasiewicz gradient inequality. This inequality, also called Kurdyka- Lojasiewicz
(KL) inequality (see [18]), asserts that for any smooth semi-algebraic function f there is a smooth concave
function ϕ such that

‖∇ (ϕ ◦ (f − min f)) (x)‖ ≥ 1

for all x in some neighborhood of the set argmin f . Its generalization to the nonsmooth case [17, 19]
has opened very surprising roads in the nonconvex world and it has allowed to perform convergence rate
analyses for many important algorithms in optimization [4, 21, 35]. In a first stage of the present paper
we show, when f is convex, that error bounds are equivalent to nonsmooth KL inequalities provided the
residual function has a moderate behavior close to 0 (meaning that its derivative blows up at reasonable
rate). Our result includes, in particular, all power-type examples like the ones that are often met in
practice2.

Once we know that error bounds provide a KL inequality, one still needs to make the connection with
the actual complexity of first-order methods. This is probably the main contribution in this paper: to any
given convex objective f : H → (−∞,+∞] and descent sequence of the form

(i) f(xk) + a‖xk − xk−1‖2 ≤ f(xk−1),

(ii) ‖ωk‖ ≤ b‖xk − xk−1‖ where ωk ∈ ∂f(xk), k ≥ 1,

we associate a worst case one dimensional proximal method

αk = argmin

{

ϕ−1(s) +
1

2ζ
(s− αk)2 : s ≥ 0

}

, α0 = ϕ−1(f(x0)),

where ζ is a constant depending explicitly on the triplet of positive real numbers (a, b, ℓ) where ℓ > 0 is a

Lipschitz constant of
(

ϕ−1
)′

. Our complexity result asserts, under weak assumptions that the “1-D prox”

governs the complexity of the original method through the elementary and natural inequality

f(xk) − min f ≤ ϕ−1(αk), k ≥ 0.

Similar results for the sequence are provided. These ideas are already present in [16] and [13, Section 3.2].
The function ϕ−1 above –the inverse of a desingularizing function for f on a convenient domain– contains
almost all the information our approach provides on the complexity of descent methods. As explained
previously, it depends on the precise knowledge of a KL inequality and thus, in this convex setting, of
an error bound. The reader familiar with second-order methods might have recognized the spirit of the
majorant method of Kantorovich [37], where a reduction to dimension one is used to study Newton’s
method.

Deriving complexity bounds in practice: applications. Our theoretical results inaugurate a simple
methodology: derive an error bound, compute the desingularizing function whenever possible, identify
essential constants in the descent method and finally compute the complexity using the one-dimensional
worst case proximal sequence. We consider first some classic well-posed problems: finding a point in an
intersection of closed convex sets with regular intersection or uniformly convex problems, and we show
how complexity of some classical methods can be obtained or recovered. We revisit the iterative shrinkage

2An absolutely crucial asset of error bounds and KL inequalities in the convex world is their global nature under a mere
coercivity assumption – see Section 6.
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thresholding algorithm (ISTA) applied to a least squares objective with ℓ1 regularization [31] and we prove
that its complexity is of the form O(qk) with q ∈ (0, 1) (see [53] for a pioneering work in this direction
and also [42] for further geometrical insights). This result contrasts with what was known on the subject
[11, 33] and suggests that many questions on the complexity of first-order methods remain open.

Theoretical aspects and complementary results. As explained before, our paper led us to establish
several theoretical results and to clarify some questions appearing in a somehow disparate manner in the
literature. We first explain how to pass from error bounds to KL inequality in the general setting of
Hilbert spaces and vice versa, similar questions appear in [17, 41, 40]. This result is proved by considering
the interplay between the contraction semigroup generated by the subdifferential function and the L1

contraction property of this flow. These results are connected to the geometry of the residual functions ω
and break down when error bounds are too flat. This is shown in Section 6 by a dimension 2 counterexample
presented in [18] for another purpose.

Our investigations also led us to consider the problem of KL inequalities for convex functions, a problem
partly tackled in [18]. We show how to extend convex KL inequalities from a level set to the whole space.
We also show that compactness and semi-algebraicity ensure that real semi-algebraic or definable coercive
convex functions are automatically KL on the whole space. This result has an interesting theoretical
consequence in terms of complexity: abstract descent methods for coercive semi-algebraic convex problems
are systematically amenable to a full complexity analysis provided that a desingularizing function –known
to exist– is explicitly computable.

Organization of the paper. Section 2 presents the basic notation and concepts used in this paper,
especially concerning elementary convex analysis, error bounds and KL inequalities. Readers familiar with
the field can directly skip to Section 3, devoted to the equivalence between KL inequalities and error
bounds. We also give some examples where this equivalence is explicitly exploited. Section 4 establishes
complexity results using KL inequalities, while Section 5 provides illustrations of our general methodology
for the ℓ1 regularized least squares method and feasibility problems. Finally, Section 6 contains further
theoretical aspects related to our main results, namely: some counterexamples to the equivalence between
error bounds and KL inequalities, more insight into the relationship between KL inequalities and the length
of subgradient curves, globalization of KL inequalities and related questions.

2 Preliminaries

In this section, we recall the basic concepts, notation and some well-known results to be used throughout the
paper. In what follows, H is a real Hilbert space and f : H → (−∞,+∞] is proper, lower-semicontinuous
and convex. We are interested in some properties of the function f around the set of its minimizers, which
we suppose to be nonempty and denote by argmin f or S. We assume, without loss of generality, that
min f = 0.

2.1 Some convex analysis

We use the standard notation from [60] (see also [7, 58] and [52]). The subdifferential of f at x is defined
as

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 for all y ∈ H}.
Clearly, x̂ minimizes f on H if, and only if, 0 ∈ ∂f(x̂). The domain of the point-to-set operator ∂f : H ⇒ H
is dom ∂f := {x ∈ H : ∂f(x) 6= ∅}. For x ∈ dom ∂f , we denote by ∂0f(x) the least-norm element of ∂f(x).
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The vector ∂0f(x) exists and is unique as it is the projection of 0 ∈ H onto the nonempty closed convex
set ∂f(x). We have ‖∂0f(x)‖ = dist(0, ∂f(x)) (when x is not in dom ∂f we set ‖∂0f(x)‖ = +∞). We
adopt the convention s× (+∞) = +∞ for all s > 0.
Given x ∈ H, the function fx, defined by

fx(y) = f(y) +
1

2
‖y − x‖2

for y ∈ H, has a unique minimizer, which we denote by proxf (x). Using Fermat’s Rule and the Moreau-
Rockafellar Theorem, proxf (x) is characterized as the unique solution of the inclusion x − proxf (x) ∈
∂f

(

proxf (x)
)

. In particular, proxf (x) ∈ dom ∂f ⊂ dom f ⊂ H. The mapping proxf : H → H is the
proximity operator associated to f . It is easy to prove that proxf is Lipschitz continuous with constant 1.

Example 1 If C ⊂ H is nonempty, closed and convex, the indicator function of C is the function iC :
H → (−∞,∞], defined by

iC(x) =

{

0 if x ∈ C

+∞ otherwise.

It is proper, lower-semicontinuous and convex. Moreover, for each x ∈ H, ∂iC(x) = NC(x), the normal
cone to C at x. In turn, proxiC is the projection operator onto C, which we denote by PC .

2.2 Subgradient curves

Consider the differential inclusion
{

ẏ(t) ∈ −∂f(y(t)), for almost all t in (0,+∞)

y(0) = x,

where x ∈ dom f and y(·) is an absolutely continuous curve in H. The main properties of this system −
for the purpose of this research − are summarized in the following:

Theorem 1 (Brézis [23], Bruck [22]) For each x ∈ dom f , there is a unique absolutely continuous
curve χx : [0,∞) → H such that χx(0) = x and

χ̇x(t) ∈ −∂f (χx(t))

for almost every t > 0. Moreover,

i) d
dtχx(t+) = −∂0f(χx(t)) for all t > 0;

ii) d
dtf

(

χx(t+)
)

= −‖χ̇x(t+)‖2 for all t > 0;

iii) For each z ∈ S, the function t 7→ ‖χx(t) − z‖ decreases;

iv) The function t 7→ f(χx(t)) is nonincreasing and limt→∞ f(χx(t)) = min f ;

v) χx(t) converges weakly to some x̂ ∈ S, as t→ ∞.

The proof of the result above is provided in [23], except for part v), which was proved in [22]. The
trajectory t 7→ χx(t) is called a subgradient curve.
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2.3 Kurdyka- Lojasiewicz inequality

In this subsection, we present the nonsmooth Kurdyka- Lojasiewicz inequality introduced in [17] (see also
[19, 18], and the fundamental works [43, 38]). To simplify the notation, we write [f < µ] = {x ∈ H :
f(x) < µ} (similar notation can be guessed from the context). Let r0 > 0 and set

K(0, r0) =
{

ϕ ∈ C0[0, r0) ∩ C1(0, r0), ϕ(0) = 0, ϕ is concave and ϕ′ > 0
}

.

The function f satisfies the Kurdyka- Lojasiewicz (KL) inequality (or has the KL property) locally at
x̄ ∈ dom f if there exist r0 > 0, ϕ ∈ K(0, r0) and ε > 0 such that

ϕ′ (f(x) − f(x̄)) dist(0, ∂f(x)) ≥ 1

for all x ∈ B(x̄, ε) ∩ [f(x̄) < f(x) < f(x̄) + r0]. We say ϕ is a desingularizing function for f at x̄. This
property basically expresses the fact that a function can be made sharp by a reparameterization of its
values.

If x̄ is not a minimizer of f , the KL inequality is obviously satisfied at x̄. Therefore, we focus on the
case when x̄ ∈ S. Since f(x̄) = 0, the KL inequality reads

ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1 (2)

for x ∈ B(x̄, ε) ∩ [0 < f < r0]. The function f has the KL property on S if it does so at each point of S.
The  Lojasiewicz gradient inequality corresponds to the case when ϕ(s) = cs1−θ for some c > 0 and

θ ∈ [0, 1). Following  Lojasiewicz original presentation, (2) can be reformulated as follows

‖∂0f(x)‖ ≥ c′ f(x)θ,

where c′ = [(1 − θ)c]−1. The number θ is the  Lojasiewicz exponent. If f has the KL property and admits
the same desingularizing function ϕ at every point, then we say that ϕ is a global desingularizing function
for f .

KL inequalities were developed within the fascinating world of real semi-algebraic sets and functions.
For that subject, we refer the reader to the book [15] by Bochnak-Coste-Roy.

We recall the following theorem on the nonsmooth KL inequality (which follows the pioneering works
of  Lojasiewicz [43] and Kurdyka [38]). It is one of the cornerstones of the present research:

Theorem 2 (Bolte-Daniilidis-Lewis [17]) (Nonsmooth KL inequality) If f : Rn → (−∞,+∞] is proper,
convex, lower-semicontinuous and semi-algebraic3, then it has the KL property around each point in dom f .

Under an additional coercivity assumption, a global result is provided in Subsection 6.3.

2.4 Error bounds

Consider a nondecreasing function ω : [0,+∞[→ [0,+∞[ with ω(0) = 0. The function f satisfies a local
error bound with residual function ω if there is r0 > 0 such that

(ω ◦ f)(x) ≥ dist(x, S)

for all x ∈ [0 ≤ f ≤ r0] (recall that min f = 0). Of particular importance is the case when ω(s) = γ−1s
1

p

with γ > 0 and p ≥ 1, namely:
f(x) ≥ γ dist(x, S)p

3If semi-algebraic is replaced by subanalytic or definable, we obtain the same results.
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for all x ∈ [0 ≤ f ≤ r0].
If f is convex lower semicontinuous, we can extend the error bound beyond [0 ≤ f ≤ r0] by linear

extrapolation. More precisely, let x ∈ dom f such that f(x) > r0. Then f is continuous on the segment
[x, PS(x)]. Therefore, there is x0 ∈ [x, PS(x)] such that f(x0) = r0. By convexity, we have

f(x) − 0

dist(x, S)
≥ f(x0) − 0

dist(x0, S)
≥ r0

(

γ

r0

) 1

p

.

It follows that
f(x) ≥ γ dist(x, S)p for x ∈ [0 ≤ f ≤ r0],

f(x) ≥ r
p−1

p

0 γ
1

p dist(x, S) for x /∈ [0 ≤ f ≤ r0].

This entails that
f(x) + f(x)

1

p ≥ γ0 dist(x, S)

for all x ∈ H, where γ0 =

(

1 + r
p−1

p

0

)

γ
1

p . This is known in the literature as a global Hölder-type error

bound (see [39]). Observe that it can be put under the form ω(f(x)) ≥ dist(x, S) by simply setting

ω(s) = 1
γ0

(s+ s
1

p ). When combined with the  Lojasiewicz error bound inequality [44, 45], the above remark
implies immediately the following result:

Theorem 3 (Global error bounds for semi-algebraic coercive convex functions)
Let f : R

n → (−∞,+∞] be proper, convex, lower-semicontinuous and semi-algebraic, and assume that
argmin f is nonempty and compact. Then f has a global error bound

f(x) + f(x)
1

p ≥ γ0 dist(x, argmin f),∀x ∈ R
n,

where γ0 > 0 and p ≥ 1 is a rational number.

3 Error bounds with moderate growth are equivalent to  Lojasiewicz

inequalities

In this section, we establish a general equivalence result between error bounds and KL inequalities. Our
main goal is to provide a simple and natural way of explicitly computing  Lojasiewicz exponents and,
more generally, desingularizing functions. To avoid perturbing the flow of our general methodology on
complexity, we discuss limitations and extensions of our results later, in Section 6.

As shown in Section 4, KL inequalities allow us to derive complexity bounds for first-order methods.
However, KL inequalities with known constants are in general difficult to establish while error bounds are
more tractable (see e.g., [39] and references therein). The fact that these two notions are equivalent opens
a wide range of possibilities when it comes to analyzing algorithm complexity.

3.1 Error bounds with moderate residual functions and  Lojasiewicz inequalities

Moderate residual functions. Error bounds often have a power or Hölder-type form (see e.g. [48,
47, 49, 39, 54, 62]). They can be either very simple s → asp or exhibit two regimes, like for instance,
s→ asp+bsq. In any cases, for all concrete instances we are aware of, residual functions are systematically
semi-algebraic or of “power-type”. In this paper, we introduce a category of functions that allows to
encompass these semi-algebraic cases and even more singular ones into a simple and appealing framework.
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A function ϕ : [0, r) → R in C1(0, r) ∩ C0[0, r) and vanishing at the origin, has a moderate behavior (near
the origin) if it satisfies a differential equation of the type

sϕ′(s) ≥ cϕ(s), ∀s ∈ (0, r),

where c is a positive constant (observe that by concavity one has necessarily c ≤ 1). A pretty direct use of
the Puiseux Lemma (see [15]) shows:

Lemma 4 If ϕ : [0, r) → R in C1(0, r)∩C0[0, r), vanishes at the origin and is semi-algebraic or subanalytic
then it has a moderate behavior.

The following theorem asserts that if ϕ has a moderate behavior, f has the global KL property if, and
only if, f has a global error bound. Besides, the desingularizing function in the KL inequality and the
residual function in the error bound are essentially the same, up to a multiplicative constant. As explained
through a counterexample in subsection 6.3, the equivalence breaks down if one argues in a setting where
the derivative ϕ can blow up faster. This result is related to results obtained in [18, 17, 29, 41, 40] and
also shares some common techniques.

Theorem 5 (Characterization of  Lojasiewicz inequalities for convex functions)
Let f : H → (−∞,+∞] be a proper, convex and lower-semicontinuous, with min f = 0. Let r0 > 0,
ϕ ∈ K(0, r0), c > 0, ρ > 0 and x̄ ∈ argmin f .

(i) [KL inequality implies error bounds] If ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1 for all x ∈ [0 < f < r0]∩B(x̄, ρ), then
dist(x, S) ≤ ϕ (f(x)) for all x ∈ [0 < f < r0] ∩B(x̄, ρ).

(ii) [Error bounds implies KL inequality] Conversely, if sϕ′(s) ≥ cϕ(s) for all s ∈ (0, r0) (ϕ has a moderate
behavior), and ϕ(f(x)) ≥ dist(x, S) for all x ∈ [0 < f < r0] ∩ B(x̄, ρ), then ϕ′ (f(x)) ‖∂0f(x)‖ ≥ c
for all x ∈ [0 < f < r0] ∩B(x̄, ρ).

Proof. (i) Recall that the mapping [0,+∞) × dom f ∋ (t, x) → χx(t) denotes the semiflow associated to
−∂f (see previous section). Since f satisfies Kurdyka- Lojasiewicz inequality, we can apply Theorem 27 of
Section 6, to obtain

‖χx(t) − χx(s)‖ ≤ ϕ(f(χx(t))) − ϕ(f(χx(s))),

for each x ∈ B(x̄, ρ) ∩ [0 < f ≤ r0] and 0 ≤ t < s. As established in Theorem 27, χx(s) must converge
strongly to some x̃ ∈ S as s → ∞. Take t = 0 and let s → ∞ to deduce that ‖x − x̃‖ ≤ ϕ(f(x)). Thus
ϕ(f(x)) ≥ dist(x, S).
(ii) Take x ∈ [0 < f < r0] ∩B(x, ρ) and write y = PS(x). By convexity, we have

0 = f(y) ≥ f(x) + 〈∂0f(x), y − x〉.

This implies
f(x) ≤ ‖∂0f(x)‖ ‖y − x‖ = dist(x, S)‖∂0f(x)‖ ≤ ϕ(f(x))‖∂0f(x)‖.

Since f(x) > 0, we deduce that

1 ≤ ‖∂0f(x)‖ϕ(f(x))

f(x)
≤ 1

c
‖∂0f(x)‖ϕ′(f(x)),

and the conclusion follows immediately. �

In a similar fashion, we can characterize the global existence of a  Lojasiewicz gradient inequality.

8



Corollary 6 (Characterization of  Lojasiewicz inequalities for convex functions: global case)
Let f : H → (−∞,+∞] be a proper, convex and lower-semicontinuous, with min f = 0. Let ϕ ∈ K(0,+∞)
and c > 0.

(i) If ϕ′ (f(x)) ‖∂0f(x)‖ ≥ 1 for all x ∈ [0 < f ], then dist(x, S) ≤ ϕ (f(x)) for all x ∈ [0 < f ].

(ii) Conversely, if sϕ′(s) ≥ cϕ(s) for all s ∈ (0, r0) (ϕ has moderate behavior), and ϕ(f(x)) ≥ dist(x, S)
for all x ∈ [0 < f ], then ϕ′ (f(x)) ‖∂0f(x)‖ ≥ c for all x ∈ [0 < f ].

Remark 7 (a) Observe the slight dissymmetry between the conclusions of (i) and (ii) in Theorem 5 and
Corollary 6: while a desingularizing function provides directly an error bound in (i), an error bound (with
moderate growth) becomes desingularizing after a rescaling, namely c−1ϕ.

(b) (Hölderian case) When in (ii) one has ϕ(s) = γs
1

p with p ≥ 1, γ > 0, then the constant c is given by

c =
1

p
. (3)

Analytical aspects linked with the above results, such as connections with subgradient curves and
nonlinear bounds, are discussed in a section devoted to further theoretical aspects of the interplay between
KL inequality and error bounds. We focus here on the essential consequences we expect in terms of
algorithms and complexity. With this objective in mind, we first provide some concrete examples in which
a KL inequality with known powers and/or constants can be provided.

3.2 Examples: computing  Lojasiewicz exponent through error bounds

The method we use for computing  Lojasiewicz exponents is quite simple: we derive an error bound for f
with as much information as possible on the constants, and then we use the convexity along with either
Theorem 5 or Corollary 6 to compute a desingularizing function together with a domain of desingularization;
this technique appears also in [41] a paper which only came to our knowledge during the finalization of our
article.

3.2.1 KL inequality for piecewise polynomial convex functions and least squares objective
with ℓ1 regularization

Here, a continuous function f : Rn → R is piecewise polynomial if there is a partition of Rn into finitely
many polyhedra4 P1, . . . , Pk, such that fi = f |Pi

is a polynomial for each i = 1, . . . , k. The degree of f
is defined as deg(f) = max{deg(fi) : i = 1, . . . , k}. We have the following interesting result from Li [39,
Corollary 3.6]:

Proposition 8 (Li [39]) Let f : Rn → R be a piecewise polynomial convex function with argmin f 6= ∅.
Then, for each r ≥ min f , there exists γr > 0 such that

f(x) − min f ≥ γr dist
(

x, argmin f
)(deg(f)−1)n+1

(4)

for all x ∈ [f ≤ r].

Combining Proposition 8 and Corollary 6, the above implies:

4Usual definitions allow the subdomains to be more complex
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Corollary 9 Let f : Rn → R be a piecewise polynomial convex function with argmin f 6= ∅. Then f has

the  Lojasiewicz property on [f ≤ r], with exponent θ = 1 − 1

(deg(f) − 1)n + 1
.

Sparse solutions of inverse problems. Let f : Rn → R be given by

f(x) =
1

2
‖Ax− b‖22 + µ‖x‖1,

where µ > 0, b ∈ R
m and A is a matrix of size m × n. Then f is obviously a piecewise polynomial

convex function of degree 2. Since f is also coercive, we have S = argmin f 6= ∅. A direct application of
Proposition 8 and Corollary 9 gives that f − min f admits θ = 1

2 as a  Lojasiewicz exponent.
Yet, in order to derive proper complexity bounds for ISTA we need to identify a computable constant γr

in (4). For this we shall apply a recent result from Beck-Shtern [10].

First let us recall some basic results on error bounds (see e.g., [36, 63]). In what follows, ‖M‖ denotes
the spectral or operator norm of a real matrix M .5

Definition 1 (Hoffman’s error bound) Given positive integers m,n, r, let A ∈ R
m×n, a ∈ R

m, E =
R
r×n, e ∈ R

r. We consider the two polyhedra

X = {x ∈ R
n : Ax ≤ a} , Y = {x ∈ R

n : Ex = e} ,

and we assume that X ∩ Y 6= ∅. There exists a constant ν = ν(A,E) ≥ 0, that only depends on the pair
(A,E) and is known as Hoffman’s constant for the pair (A,E), such that

dist(x,X ∩ Y ) ≤ ν‖Ex− e‖, ∀x ∈ X. (5)

A crucial aspect of Hoffman’s error bound is the possibility of estimating the constant ν from the data
A,E. We will not enter into these details here, we simply refer the reader to the work of Zǎlinescu [63]
and the references therein.

As suggested by Beck, we shall now apply a very useful result from [10] to derive an error bound for f .
Recall that S = argminRn f is convex, compact and nonempty. For any x∗ ∈ S, f(x∗) ≤ f(0) = 1

2‖b‖2
which implies ‖x∗‖1 ≤ ‖b‖2

2µ . Hence S ⊂ {x ∈ R
n : ‖x‖1 ≤ R} for any fixed R > ‖b‖2

2µ . For such a bound R,
one has

min
Rn

f = min

{

1

2
‖Ax− b‖22 + µ‖x‖1 : x ∈ R

n

}

= min

{

1

2
‖Ax− b‖22 + µy : (x, y) ∈ R

n × R, ‖x‖1 ≤ R, y = ‖x‖1
}

= min

{

1

2
‖Ax− b‖22 + µy : (x, y) ∈ R

n × R, ‖x‖1 − y ≤ 0, y ≤ R

}

= min

{

1

2
‖Ãx̃− b̃‖22 + 〈µ̃, x̃〉 : x̃ = (x, y) ∈ R

n × R, Mx̃ ≤ R̃

}

(6)

5It is the largest singular value of M , which is the square root of the largest eigenvalue of the positive-semidefinite square
matrix MTM , where MT is the transpose matrix of M .
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where










































• Ã = [A, 0Rm×1 ] ∈ R
m×(n+1), b̃ = (b1, . . . , bm, 0) ∈ R

m+1,

• µ̃ = (0, . . . , 0, µ) ∈ R
n+1, R̃ = (0, . . . , 0, R) ∈ R

n+1

•M =

[

E −1
R2n×1

0R1×n 1

]

is a matrix of size (2n + 1) × (n+ 1),

where E is a matrix of size 2n × n whose rows are all possible distinct vectors of size n

of the form ei = (±1, . . . ,±1) for all i = 1, . . . , 2n. The order of the ei being arbitrary.

Set X̃ :=
{

x̃ ∈ R
n+1 : Mx̃ ≤ R̃

}

and observe that the “geometrical complexity” of the problem is now

embodied in the matrix M .
It is clear that

(x∗, y∗) ∈ S̃ := argmin
x̃∈X̃

(

f̃(x̃) :=
1

2
‖Ãx̃− b̃‖22 + 〈µ̃, x̃〉

)

if and only if (x∗ ∈ S and y∗ = ‖x∗‖1) .

Using [10, Lemma 2.5], we obtain:

dist2(x̃, S̃) ≤ ν2
(

‖µ̃‖D + 3GDA + 2G2 + 2
)

(

f̃(x̃) − f̃(x̃∗)
)

, ∀x̃ ∈ X̃

where

• x̃∗ = (x∗, y∗) is any optimal point in S̃,

• ν is the Hoffman constant associated with the couple (M, [ÃT , µ̃T ]T ) as in Definition 1 above.

• D is the Euclidean diameter of the polyhedron X̃ = {(x, y) ∈ R
n+1 : ‖x‖1 ≤ y ≤ R} and is thus the

maximal distance between two vertices. Hence D = 2R.

• G is the maximal Euclidean norm of the gradient of 1
2‖.− b̃‖2 over Ã(X̃), hence, G ≤ R‖A‖ + ‖b‖.

• DA is the Euclidean diameter of the set Ã(X̃), thus DA = maxxi∈X ‖A(x1 − x2)‖ ≤ 2R‖A‖.

Therefore, we can rewrite the above inequality as follows

dist2(x, S) + (y − y∗)2 ≤ κR

(

1

2
‖Ax− b‖22 + µy −

(

1

2
‖Ax∗ − b‖22 + µ‖x∗‖1

))

,∀(x, y) ∈ X̃, (7)

where
κR = ν2

(

2Rµ+ 6 (R‖A‖ + ‖b‖)R‖A‖ + 2 (R‖A‖ + ‖b‖)2 + 2
)

. (8)

By taking y = ‖x‖1, (7) becomes

dist2(x, S) + (y − y∗)2 ≤ κR(f(x) − f(x∗)), ∀x ∈ R
n, ‖x‖1 ≤ R.

We therefore obtain

Lemma 10 (Error bound and KL inequality for the least squares objective with ℓ1 regular-

ization) Fix R > ‖b‖2
2µ . Then,

f(x) − f(x∗) ≥ 2γR dist2(x, S) for all x in R
n such that ‖x‖1 ≤ R, (9)
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where

γR =
1

4ν2
(

1 + µR+ (R‖A‖ + ‖b‖) (4R‖A‖ + ‖b‖)
) . (10)

As a consequence f is a KL function on the ℓ1 ball of radius R and admits ϕ(s) =
√

2γ−1
R s as desingular-

izing function.

3.2.2 Distances to an intersection: convex feasibility

For m ≥ 2, one considers closed convex subsets C1, . . . , Cm of H whose intersection contains a nonempty
open ball. This proposition is a quantitative version of [12, Corollary 3.1].

Proposition 11 Suppose that there is x̄ ∈ H and R > 0 such that

B(x̄, R) ⊂
m
⋂

i=1

Ci. (11)

Then,

dist(x,
m∩
i=1

Ci) ≤
(

1 +
2‖x− x̄‖

R

)m−1

max {dist(x,Ci), i = 1, · · · ,m} , ∀x ∈ H. (12)

Proof. We assume m = 2 in a first stage. Put C = C1 ∩ C2, d = 2 max {dist(x,C1),dist(x,C2)} and fix
x ∈ H. The function dist(·, C2) is Lipschitz continuous with constant 1. Thus,

|dist(PC1
(x), C2) − dist(x,C2)| ≤ ‖x− PC1

(x)‖

and so
dist(PC1

(x), C2) ≤ dist(x,C1) + dist(x,C2) ≤ d.

By taking y = x̄ + R
d (PC1

(x) − PC2
PC1

(x)), we deduce that y ∈ B(x̄, R) ⊂ C1 ∩ C2. Now, we construct a
specific point z ∈ C as follows

z =
d

R+ d
y +

R

R+ d
PC2

PC1
(x).

Obviously z is in C2, and if we replace y in z by x̄ + R
d

(

PC1
(x) − PC2

PC1
(x)

)

, we obtain

z =
d

R+ d
x̄+

R

R+ d
PC1

(x) ∈ C1,

This implies that z ∈ C1 ∩ C2. Therefore

dist(x,C) ≤ ‖x− z‖ ≤ ‖x− PC1
(x)‖ + ‖z − PC1

(x)‖,

and, since x̄ ∈ C1 ∩ C2,

‖z − PC1
(x)‖ =

d

R+ d
‖x̄− PC1

(x)‖ =
d

R+ d
‖PC1

(x̄) − PC1
(x)‖ ≤ d

R+ d
‖x̄− x‖.

By combining the above results, we have dist(x,C) ≤ d
2 + d

R+d‖x− x̄‖, which gives

dist(x,C) ≤
(

1 +
2‖x− x̄‖

R

)

max {dist(x,C1),dist(x,C2)} . (13)
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For arbitrary m ≥ 2, applying (13) for the two sets C1 and
m∩
i=2

Ci, we obtain

dist(x,
m∩
i=1

Ci) ≤
(

1 +
2‖x− x̄‖

R

)

max

{

dist(x,C1),dist(x,
m∩
i=2

Ci)

}

.

Repeating the process (m− 1) times, we obtain (12). �

A potential function for the barycentric projection method. Let C := ∩mi=1Ci. If C 6= ∅, finding
a point in C is equivalent to minimizing the following convex function over H

f(x) =
1

2

m
∑

i=1

αi dist2(x,Ci), (14)

where αi > 0 for all i = 1, . . . ,m and
∑m

1 αi = 1. As we shall see in the next section, the gradient method
applied to f yields the barycentric projection method (introduced in [5]; see also [25, 12]). We now provide
an error bound for f under assumption (11).

It is clear that C = argmin f = {x ∈ H : f(x) = 0}. Fix any x0 ∈ H. From Proposition 11, we obtain
that f has the following local error bound:

dist(x,C) ≤
(

1 +
2‖x0 − x̄‖

R

)m−1




2

min
i=1,...,m

αi





1

2

√

f(x), ∀x ∈ B(x̄, ‖x0 − x̄‖).

Combining with Theorem 5, we deduce that f satisfies the  Lojasiewicz inequality on B(x̄, ‖x0−x̄‖)∩[0 <

f ] with desingularizing function ϕ(s) =
√

2
M s , where

M =
1

4

(

1 +
2‖x0 − x̄‖

R

)2−2m

min
i=1,...,m

αi. (15)

A potential function for the alternating projection method. Assume now that m = 2, and set
g = iC1

+ 1
2 dist(·, C2)2 – a function related to the alternating projection method, as we shall see in a

Section 5. One obviously has g(x) ≥ 1
2

(

dist2(x,C1) + dist2(x,C2)
)

for all x ∈ H. From the above remarks,
we deduce that

dist(x,C) ≤ 2

(

1 +
2‖x0 − x̄‖

R

)

√

g(x),∀x ∈ B(x̄, ‖x0 − x̄‖).

Hence, g satisfies the  Lojasiewicz inequality on B(x̄, ‖x0− x̄‖)∩ [0 < g] with desingularizing function given
by

ϕ(s) =

√

2

M ′ s ,

where

M ′ =
1

8

(

1 +
2‖x0 − x̄‖

R

)−2

. (16)
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4 Complexity for first-order methods with sufficient decrease condition

In this section, we derive complexity bounds for first-order methods with a sufficient decrease condition,
under a KL inequality. In what follows, we assume, as before, that f : H → (−∞,+∞] is a proper lower-
semicontinuous convex function such that S = argmin f 6= ∅ and min f = 0.

4.1 Subgradient sequences

We recall, from [4], that (xk)k∈N in H is a subgradient descent sequence for f : H → (−∞,+∞] if x0 ∈ dom f
and there exist a, b > 0 such that:

(H1) (Sufficient decrease condition) For each k ≥ 1,

f(xk) + a‖xk − xk−1‖2 ≤ f(xk−1).

(H2) (Relative error condition) For each k ≥ 1, there is ωk ∈ ∂f(xk) such that

‖ωk‖ ≤ b‖xk − xk−1‖.

We point out that an additional continuity condition − which is not necessary here because of the
convexity of f − was required in [4].

It seems that these conditions were first considered in the seminal and inspiring work of Luo-Tseng [50].
They were used to study convergence rates from error bounds. We adopt partly their views and we provide
a double improvement: on the one hand, we show how complexity can be tackled for such dynamics, and,
on the other hand, we provide a general methodology that will hopefully be used for many other methods
than those considered here.

The motivation behind this definition is due to the fact that such sequences are generated by many
prominent methods, such as the forward-backward method [50, 4, 35] (which we describe in detail below),
many trust region methods [1], alternating methods [4, 21], and, in a much more subtle manner, sequential
quadratic methods and a wealth of majorization-minimization methods [20, 55]. In Section 5, we essentially
focus on the forward-backward method because of its simplicity and its efficiency. Clearly, many other
examples could be worked out.

Remark 12 (Explicit step for Lipschitz continuous gradient) If f is smooth and its gradient is
Lipschitz continuous with constant L, then any sequence satisfying:

(H2’) For each k ≥ 1, ‖∇f(xk−1)‖ ≤ b‖xk − xk−1‖,
also satisfies (H2).
Indeed, for every k ≥ 1,

‖∇f(xk)‖ ≤ ‖∇f(xk−1)‖ + ‖∇f(xk) −∇f(xk−1)‖ ≤ b‖xk − xk−1‖ + L‖xk − xk−1‖ = (b+ L)‖xk − xk−1‖.

Example 2 (The forward-backward splitting method.) The forward-backward splitting or proximal
gradient method is an important model algorithm, although many others could be considered in the general
setting we provide (see [4, 21, 35]). Let g : H → (−∞,+∞] be a proper lower-semicontinuous convex
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function and let h : H → R be a smooth convex function whose gradient is Lipschitz continuous with
constant L. In order to minimize g + h over H, the forward-backward method generates a sequence
(xk)k∈N from a given starting point x0 ∈ H, and using the recursion

xk+1 ∈ argmin

{

g(z) + 〈∇h(xk), z − xk〉 +
1

2λk
‖z − xk‖2 : z ∈ H

}

(17)

for k ≥ 1. By the strong convexity, lower-semicontinuity of the argument in the right-hand side and weak
topology arguments, the set of minimizers has exactly one element. On the other hand, it is easily seen
that (17) is equivalent to

xk+1 ∈ argmin

{

g(z) +
1

2λk
‖z − (xk − λk∇h(xk))‖2 : z ∈ H

}

.

Moreover, using the proximity operator defined in Subsection 2.1, the latter can be rewritten as

xk+1 = proxλkg (xk − λk∇h(xk)) . (18)

When h = 0, we obtain the proximal point algorithm for g. On the other hand, if g = 0 it reduces to the
classical explicit gradient method for h.

We shall see that the forward-backward method generates subgradient descent sequences if the step
sizes are properly chosen.

Proposition 13 Assume now that 0 < λ− ≤ λk ≤ λ+ < 2/L for all k ∈ N. Then (H1) and (H2) are
satisfied for the forward-backward splitting method (18) with

a =
1

λ+
− L

2
and b =

1

λ−
+ L.

Proof. Take k ≥ 0. For the constant a, we use the fundamental inequality provided in [21, Remark
3.2(iii)]:

g(xk+1) + h(xk+1) ≤ g(xk) +h(xk)−
(

1

λk
− L

2

)

‖xk+1 −xk‖2 ≤ g(xk) + h(xk)−
(

1

λ+
− L

2

)

‖xk+1 −xk‖2.

For b, we proceed as in Remark 12 above. Using the Moreau-Rockafellar Theorem, the optimality condition
for the forward-backward method is given by

ωk+1 + ∇h(xk) +
1

λk
(xk+1 − xk) = 0,

where ωk+1 ∈ ∂g(xk+1). Using the Lipschitz continuity of ∇h, we obtain

‖ωk+1 + ∇h(xk+1)‖ ≤
(

1

λk
+ L

)

‖xk+1 − xk‖ ≤
(

1

λ−
+ L

)

‖xk+1 − xk‖,

as claimed. �

If f = g + h has the KL property, Theorem 14 below guarantees the strong convergence of every
sequence generated by the forward-backward method.
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Convergence of subgradient descent sequences follows readily from [4] and [21, 35]. Although this kind
of result has now became standard, we provide a direct proof for estimating thoroughly the constants at
stake.

Theorem 14 (Convergence of subgradient descent methods in a Hilbertian convex setting)
Assume that f : H → (−∞,+∞] is a proper lower-semicontinuous convex function which has the KL
property on [0 < f < r̄] with desingularizing function ϕ ∈ K(0, r̄). We consider a subgradient descent
sequence (xk)k∈N such that f(x0) ≤ r0 < r̄. Then, xk converges strongly to some x∗ ∈ argmin f and

‖xk − x∗‖ ≤ b

a
ϕ(f(xk)) +

√

f(xk−1)

a
, ∀k ≥ 1. (19)

Proof. Using (H1), we deduce that the sequence (f(xk))k∈N is nonincreasing, thus xk ∈ [0 ≤ f < r̄].
Denote by i0 the first index i0 ≥ 1 such that ‖xi0 − xi0−1‖ = 0 whenever it exists. If such an i0 exists, one
has ωi0 = 0, and so, f(xi0) = 0. This implies that f(xi0+1) = 0 and thus xi0+1 = xi0 (the sequence is then
stationary.) Hence the upper bound holds provided that it has been established for all k ≤ i0 − 1 in (19).
A similar reasoning applies to the case when f(xi0) = 0.

Assume first that f(xk) > 0 and ‖xk − xk−1‖ > 0 for all k ≥ 1. Combining (H1), (H2), and using the
concavity of ϕ we obtain

ϕ(f(xk)) − ϕ(f(xk+1)) ≥ ϕ′(f(xk)) (f(xk) − f(xk+1))

≥ a‖xk − xk+1‖2
b‖xk−1 − xk‖

≥ a

b

(

2‖xk − xk+1‖‖xk − xk−1‖ − ‖xk−1 − xk‖2
)

‖xk − xk−1‖
,∀k ≥ 1.

≥ a

b
(2‖xk − xk+1‖ − ‖xk−1 − xk‖),∀k ≥ 1. (20)

This implies

b

a

(

ϕ(f(x1)) − ϕ(f(xk+1))
)

+ ‖x0 − x1‖ ≥
k

∑

i=1

‖xi − xi+1‖,∀k ∈ N,

therefore, the series
∑∞

i=1 ‖xi−xi+1‖ is convergent, which implies, by the Cauchy criterion (H is complete),
that the sequence (xk)k∈N converges to some point x∗ ∈ H. From (H2), there is a sequence ωk ∈ ∂f(xk)
which converges to 0. Since f is convex and lower-semicontinuous, the graph of ∂f is closed in H ×H for
the strong-weak (and weak-strong) topology. Thus 0 ∈ ∂f(x∗).
Coming back to (20), we also infer

b

a
(ϕ(f(xk)) − ϕ(f(xk+m))) + ‖xk−1 − xk‖ ≥

k+m
∑

i=k

‖xi − xi+1‖,∀k,m ∈ N.

Combining the latter with (H1) yields

b

a
(ϕ(f(xk)) − ϕ(f(xk+m))) +

√

f(xk−1) − f(xk)

a
≥

k+m
∑

i=k

‖xi − xi+1‖,∀k,m ∈ N.
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Letting m→ ∞, we obtain

b

a
ϕ(f(xk)) +

√

f(xk−1) − f(xk)

a
≥ ‖xk − x∗‖,∀k ∈ N,

thus
b

a
ϕ(f(xk)) +

√

f(xk−1)

a
≥ ‖xk − x∗‖,∀k ∈ N.

The case when ‖xk − xk−1‖ or f(xk) vanishes for some k follows easily by using the argument evoked at
the beginning of the proof. �

Remark 15 When f is twice continuously differentiable and definable (in particular, if it is semi-algebraic)
it is proved in [13] that ϕ(s) ≥ O(

√
s) near the origin. This shows that, in general, the “worst” complexity

is more likely to be induced by ϕ rather than the square root.

4.2 Complexity for subgradient descent sequences

This section is devoted to the study of complexity for first-order descent methods of KL convex functions
in Hilbert spaces.

Let 0 < r0 < r̄, we shall assume that f has the KL property on [0 < f < r̄] with desingularizing
function ϕ ∈ K(0, r̄) (recall that argmin f 6= ∅ and min f = 0.). Whence

ϕ′(f(x))||∂0f(x)|| ≥ 1

for all x ∈ [0 < f < r̄]. Set α0 = ϕ(r0) and consider the function ψ = (ϕ|[0,r0])−1 : [0, α0] → [0, r0], which
is increasing and convex.

The following assumption will be useful in the sequel:

(A) The function ψ′ is Lipschitz continuous (on [0, α0]) with constant ℓ > 0 and ψ′(0) = 0.

Intuitively, the function ψ embodies the worst-case “profile” of f . As explained below, the worst-
case behavior of descent methods appears indeed to be measured through ϕ. The assumption (A) is
definitely weak, since for interesting cases ψ is flat near 0, while it can be chosen affine for large values (see
Proposition 30).

We focus on algorithms that generate subgradient descent sequences, thus complying with (H1)
and (H2).

A one-dimensional worst-case proximal sequence. Set

ζ =

√
1 + 2ℓ a b−2 − 1

ℓ
> 0, (21)

where a > 0, b > 0 and ℓ > 0 are given in (H1), (H2) and (A), respectively. Starting from α0, we define
the one-dimensional worst-case proximal sequence inductively by

αk+1 = argmin

{

ψ(u) +
1

2ζ
(u− αk)2 : u ≥ 0

}

(22)
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for k ≥ 0. Using standard arguments, one sees that αk is well defined and positive for each k ≥ 0. Moreover,
the sequence can be interpreted through the recursion

αk+1 = (I + ζψ′)−1(αk) = proxζψ(αk), (23)

for k ≥ 0 and where I is the identity on R. Finally, it is easy to prove that αk is decreasing and converges
to zero. By continuity, lim

k→∞
ψ(αk) = 0.

The following is one of our main results. It asserts that (αk)k∈N is a majorizing sequence “à la Kan-
torovich”:

Theorem 16 (Complexity of descent sequences for convex KL functions)
Let f : H → (−∞,+∞] be a proper lower-semicontinuous convex function with argmin f 6= ∅ and min f =
0. Assume further that f has the KL property on [0 < f < r̄]. Let (xk)k∈N be a subgradient descent sequence
with f(x0) = r0 ∈ (0, r̄) and suppose that assumption (A) holds (on the interval [0, α0] with ψ(α0) = r0).

Define the one-dimensional worst-case proximal sequence (αk)k∈N as above6. Then, (xk)k∈N converges
strongly to some minimizer x∗ and, moreover,

f(xk) ≤ ψ(αk), ∀k ≥ 0, (24)

‖xk − x∗‖ ≤ b

a
αk +

√

ψ(αk−1)

a
, ∀k ≥ 1. (25)

Proof. For k ≥ 1, set rk := f(xk). If rk = 0 the result is trivial. Assume rk > 0, then one has also rj > 0

for j = 1, . . . , k. Set βk = ψ−1(rk) > 0 and sk =
βk−1−βk
ψ′(βk)

> 0 so that βk satisfies

βk = (1 + skψ
′)−1(βk−1). (26)

We shall prove that sk ≥ ζ. Combining the KL inequality and (H2), we obtain that

b2ϕ′(rk)2‖xk − xk−1‖2 ≥ ϕ′(rk)2‖ωk‖2 ≥ 1,

where ωk is as in (H2). Using (H1) and the formula for the derivative of the inverse function, this gives

a

b2
≤ ϕ′(rk)2(rk−1 − rk) =

(ψ(βk−1) − ψ(βk))

ψ′(βk)2
.

We now use the descent Lemma on ψ (see, for instance, [58, Lemma 1.30]), to obtain

a

b2
≤ (βk−1 − βk)

ψ′(βk)
+
ℓ(βk−1 − βk)2

2ψ′(βk)2
= sk +

ℓ

2
s2k.

We conclude that

sk ≥
√

1 + 2ℓ a b−2 − 1

ℓ
= ζ. (27)

The above holds for every k ≥ 1 such that rk > 0.

To conclude we need two simple results on the prox operator in one dimension.
Claim 1. Take λ0 > λ1 and γ > 0. Then

6See (21) and (22).
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(I + λ0ψ′)−1(γ) < (I + λ1ψ′)−1(γ).

Proof of Claim 1. It is elementary, set δ = (I + λ1ψ′)−1(γ) ∈ (0, γ), one indeed has (I + λ0ψ′)(δ) =
(I + λ1ψ′)(δ) + (λ0 − λ1)ψ′(δ) > γ, and the result follows by the monotonicity of I + λ0ψ

′.

Claim 2. Let (λ0k)k∈N, (λ
1
k)k∈N two positive sequences such that λ0k ≥ λ1k for all k ≥ 0. Define the two

proximal sequences
β0k+1 = (I + λ0kψ

′)−1(β0k), β1k+1 = (I + λ1kψ
′)−1(β1k),

with β00 = β10 ∈ (0, r0]. Then β0k ≤ β1k for all k ≥ 0.

Proof of Claim 2. We proceed by induction, the first step being trivial, we assume the result holds true
for k ≥ 0. We write

β0k+1 = (I + λ0kψ
′)−1(β0k) ≤ (I + λ0kψ

′)−1(β1k) ≤ (I + λ1kψ
′)−1(β1k) = β1k+1,

where the first inequality is due to the induction assumption (and the monotonicity of ψ′), while the second
one follows from Claim 1.

We now conclude by observing that αk, βk are proximal sequences,

αk+1 = (I + cψ′)−1(αk), βk+1 = (I + skψ
′)−1(βk).

Recalling that sk ≥ ζ, one can apply Claim 2 to obtain that αk ≥ βk. And thus ψ(αk) ≥ ψ(βk) = rk.
The last point follows from Theorem 14. �

Remark 17 (Two complexity regimes) In many cases the function ψ is nonlinear near zero and is
affine beyond a given threshold t0 > 0 (see subsection 2.4 or Proposition 30). This geometry reflects on
the convergence rate of the estimators as follows:

1. A fast convergence regime is observed when αk > t0. The objective is cut down by a constant value
at each step.

2. When the sequence αk enters [0, t0], a slower and restrictive complexity regime appears.

Remark 18 (Complexity with a continuum of minimizers) We draw the attention of the reader
that our complexity result on the sequence (not only on the values) holds even in the case when there is a
continuum of minimizers.

It is obvious from the proof that the following result holds.

Corollary 19 (Stable sets and complexity) Let X be a subset of H. If the set [0 < f < r̄] on which f
has the KL property is replaced by a more general set of the form: X̄ = X ∩ [0 < f < r̄] with the property
that xk ∈ X̄ for all k ≥ 0, then the same result holds.

The above corollary has the advantage to relax the constraints on the desingularizing function: the
smaller the set is, the lower (and thus the better) ϕ can be7. There are thus some possibilities to obtain
functions ψ with an improved conditioning/geometry, which could eventually lead to tighter complexity

7Desingularizing functions for a given problem (but with different domains) are generally definable in the same o-minimal
structure thus their germs are always comparable. This is why the expression “the lower” is not ambiguous in our context.
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bounds. On the other hand, the stability condition xk ∈ X̄, ∀k ∈ N is generally difficult to obtain.

We conclude by providing a study of the important case ψ(s) = ℓ
2s

2. In that case assumption (A)
holds, and we obtain the following particular instance of Theorem 16:

Corollary 20 The assumptions and the notation are those of Theorem 16, but we assume further that f
has the KL property with ψ(s) = ℓ

2s
2 on [0 < f < r̄]. We set

σ = ℓb−2. (28)

In that case the complexity estimates given in Theorem 16 take the form

f(xk) ≤ f(x0)

(1 + 2aσ)k
, ∀k ≥ 0, (29)

‖xk − x∗‖ ≤



1 +
1

aσ
√

1 + 1
2aσ





√

1
af(x0)

(1 + 2aσ)
k−1

2

, ∀k ≥ 1. (30)

Proof. First, recall that the one-dimensional worst-case proximal sequence (αk)k∈N is given by α0 =
ϕ(r0), and

αk+1 = argmin

{

ℓ

2
s2 +

1

2ζ
(s− αk)2 : s ≥ 0

}

for all k ≥ 0, where

ζ =

√
1 + 2ℓab−2 − 1

ℓ
.

Whence, αk+1 = αk

(1+ℓζ) , and so,

αk =
α0

(1 + ℓζ)k
, ∀k ≥ 0. (31)

From (24), we immediately deduce

f(xk) ≤
f(x0)

(1 + ℓζ)2k
.

Finally, since

1 + ℓζ =
√

1 + 2ℓab−2 =
√

1 + 2aσ,

we obtain (29). For (30), first observe that

b

a
αk =

b

a

α0

(1 + ℓζ)k
=

b

a
√
ℓ

√

2f(x0)

(1 + ℓζ)k
=

b

a
√
ℓ

√

2f(x0)

(1 + 2ℓab−2)k/2
, (32)

while
√

ψ(αk−1)

a
=

√

ℓα2
k−1

2a
=

√

ℓα2
0

2a(1 + ℓζ)2k−2
=

√

1 + 2ℓab−2

2a

√

2f(x0)

(1 + 2ℓab−2)k/2
. (33)

In view of (25), by adding (32) and (33) we obtain:

‖xk − x∗‖ ≤
[

b

a
√
ℓ

+

√

1

2a
+

ℓ

b2

]

√

2f(x0)

(1 + 2ℓab−2)k/2
, ∀k ≥ 1. (34)
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To conclude, observe that

[

b

a
√
ℓ

+

√

1

2a
+

ℓ

b2

]

=

√

1

2a
+

ℓ

b2

[

1 +
1

√

aσ
2 + a2σ2

]

=

√

1 + 2aσ

2a



1 +
1

aσ
√

1 + 1
2aσ



 ,

and combine this last equality with (34) to obtain the result.
�

Remark 21 (Constants) The constant σ = ℓb−2 plays the role of a step size as it can be seen in the
forthcoming examples. For smooth problems and for the classical gradient method, one has for instance
σ = constant · 1

L (see Section 5 below).

5 Applications: feasibility problems, uniformly convex problems and

compressed sensing

In this section we apply our general methodology to derive complexity results for some keynote algorithms
that are used to solve problems arising in compressed sensing and convex feasibility. We shall make a
constant use of Corollary 20, so let us keep in mind the notation introduced in Section 4, especially the
constants a, b and ℓ.

5.1 Convex feasibility problems with regular intersection

Let
{

Ci
}

i∈{1,...,m} be a family of closed convex subsets of H, for which there exist R > 0 and x̄ ∈ H with

B(x̄, R) ⊂ C :=

m
⋂

i=1

Ci.

Barycentric Projection Algorithm. Starting from x0 ∈ H, this method generates a sequence (xk)k∈N
by the following recursion

xk+1 =

m
∑

i=1

αiPCi
(xk).

where αi > 0 and
∑m

i=1 αi = 1.

Using the function f = 1
2

m
∑

i=1
αi dist2(·, Ci), studied in Subsection 3.2.2, it is easy to check that

∇f(x) =

m
∑

i=1

αi(x− PCi
x) = x−

m
∑

i=1

αiPCi
(x)

for all x in H. Thus, the sequence (xk)k∈N can be described by the recursion

xk+1 = xk −∇f(xk), k ≥ 0.
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Moreover, ∇f is Lipschitz continuous with constant L = 1. It follows that (xk)k∈N satisfies the conditions
(H1) and (H2) with a = 1

2 , b = 2. It is classical to see that for any x̂ ∈ C, the sequence ‖xk − x̂‖ is
decreasing (see, for instance, [58]). This implies that xk ∈ B(x̄, ‖x0 − x̄‖) for all k ≥ 0. As a consequence,
f has a global desingularizing function ϕ on B(x̄, ‖x0 − x̄‖), whose inverse is given by

ψ(s) =
M

2
s2, s ≥ 0,

where M is given by (15). Using Theorem 20 with a = 1
2 , b = 2 and ℓ = M , we obtain:

Theorem 22 (Complexity of the barycentric projection method for regular intersections) The
barycentric projection sequence (xk)k∈N converges strongly to a point x∗ ∈ C and

f(xk) ≤ f(x0)
(

1 + M
4

)k
, ∀k ≥ 0,

‖xk − x∗‖ ≤



1 +
8

M
√

1 + 4
M





√

2f(x0)
(

1 + M
4

)
k−1

2

, ∀k ≥ 1,

where M is given by (15).

Alternating projection algorithm. We consider here the feasibility problem in the case m = 2. The
von Neuman’s alternating projection method is given by the following recursion

x0 ∈ H, and xk+1 = PC1
PC2

(xk) ∀k ≥ 0.

Let g = iC1
+ 1

2 dist2(·, C2) and let M ′ be defined as in (16) (Subsection 3.2.2). The function h =
1
2 dist2(·, C2) is differentiable and ∇h = I − PC2

is Lipschitz continuous with constant 1. We can interpret
the sequence (xk)k∈N as the forward-backward splitting method8

xk+1 = proxiC1

(xk −∇h(xk)) = PC1
(xk −∇h(xk)),

and observe that the sequence satisfies the conditions (H1) and (H2) with a = 1
2 and b = 2. As before,

the fact that xk ∈ B(x̄, ‖x0 − x̄‖) for all k ≥ 0, is standard (see [6]). As a consequence, the function g has
a global desingularizing function ϕ on B(x̄, ‖x̄ − x0‖) whose inverse ψ is ψ(s) = M ′

2 s
2, where M ′ is given

by (16). Using Corollary 20 with a = 1
2 , b = 2 and ℓ = M ′, we obtain:

Theorem 23 (Complexity of the alternating projection method for regular convex sets) With
no loss of generality, we assume that x0 ∈ C1. The sequence generated by the alternating projection method
converges to a point x∗ ∈ C. Moreover, xk ∈ C1 for all k ≥ 1,

dist(xk, C2) ≤ dist(x0, C2)
(

1 + M ′

4

)
k
2

, ∀k ≥ 0,

‖xk − x∗‖ ≤



1 +
8

M ′
√

1 + M ′

4





dist(x0, C2)
(

1 + M ′

4

)
k−1

2

, ∀k ≥ 1,

where M ′ is given by (16).

8A very interesting result from Baillon-Combettes-Cominetti [9] establishes that for more than two sets there are no
potential functions corresponding to the alternating projection method.
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5.2 Uniformly convex problems

Let σ be a positive coefficient. The function f is called p-uniformly convex, or simply uniformly convex, if
there exists p ≥ 2 such that:

f(y) ≥ f(x) + 〈x∗, y − x〉 + σ‖y − x‖p,

for all x, y ∈ H, x∗ ∈ ∂f(x). It is easy to see that f satisfies the KL inequality on H with ϕ(s) = p σ−
1

p s
1

p

(see [3]). For such a function we have

ψ(s) =
σ

pp
sp, s ≥ 0.

Fix x0 in dom f and set r0 = f(x0), α0 = ψ(r0). The Lipschitz continuity constant of ψ′ is given by

ℓ = (p−1)σ
pp−1 αp−2

0 . Choose a descent method satisfying (H1), (H2), some examples can be found in [4, 35].

Set ζ =
√
1+2ℓ a b−2−1

ℓ . The complexity of the method is measured by the real sequence

αk+1 = argmin

{

σ

pp
up +

1

2ζ
(u− αk)

2 : u ≥ 0

}

, k ≥ 0.

The case p = 2 can be computed in closed form (as previously), but in general only numerical estimates
are available.

Proposition 8 shows that first-order descent sequences for piecewise polynomial convex functions have
a similar complexity structure. This shows that error bounds or KL inequalities capture more precisely
the determinant geometrical factors behind complexity than mere uniform convexity.

5.3 Compressed sensing and the ℓ
1-regularized least squares problem

We refer for instance to [24] for an account on compressed sensing and an insight into its vast field of
applications. We consider the cost function f : Rn → R given by

f(x) = µ‖x‖1 +
1

2
‖Ax− d‖22,

where µ > 0, A ∈ R
m×n and d ∈ R

m.
Set g(x) = µ‖x‖1 and h(x) = 1

2‖Ax − d‖22 = 1
2‖Ax − d‖2, so that g is proper, lower-semicontinuous

and convex, whereas h is convex and differentiable, and its gradient is Lipschitz continuous with constant
L = ‖ATA‖. Starting from any x0 ∈ R

n, the forward-backward splitting method applied to f is known as
the iterative shrinkage thresholding algorithm [31]9:

(ISTA) xk+1 = proxλkµ‖·‖1
(

xk − λk(ATAxk −ATd)
)

for k ≥ 0.

Here, proxλkµ‖·‖1 is an easily computable piecewise linear object known as the soft thresholding operator
(see, for instance, [27]). This method has been applied widely in many contexts and is known to have a
complexity O

(

1
k

)

. We intend to prove here that this bound can be surprisingly “improved” by our tech-
niques.

First, recall that, according to Proposition 13, sequences generated by this method comply with (H1)
and (H2), provided the stepsizes satisfy 0 < λ− ≤ λk ≤ λ+ < 2/L. Recall that the constants a and b can
be chosen as

a =
1

λ+
− L

2
and b =

1

λ−
+ L, (35)

9Connection between ISTA and the forward-backward splitting method is due to Combettes-Wajs [27]
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respectively.

Set R = max
(f(x0)

µ
, 1 +

‖d‖2
2µ

)

. We clearly have R > ‖d‖2
2µ , and, using the fact that (xk)k∈N is a

descent sequence, we can easily verify that ‖xk‖1 ≤ R for all k ∈ N.
From Lemma 10 we know that the function f has the KL property on [min f < f < min f + r0]∩ {x ∈

R
n : ‖x‖1 ≤ R} with10 a global desingularizing function ϕ whose inverse ψ is given by

ψ(s) =
γR
2
s2, s ≥ 0

where γR is known to exist and is bounded from above by the constant given in (10).

Remark 24 (Constant step size) If one makes the simple choice of a constant step size all throughout
the process, namely λk = d/L with d ∈ (0, 2), one obtains

ζ =

√

1 + d(2−d)
L(1+d)2

γR − 1

γR
and αk =

α0
(

1 + d(2−d)
L(1+d)2 γR

)k/2
, k ≥ 0.

Combining the above developments with Corollary 19, we obtain the following surprising result:

Theorem 25 (Complexity bounds for ISTA) The sequence (xk)k∈N generated by ISTA converges to
a minimizer x∗ of f , and satisfies

f(xk) − min f ≤ f(x0) − min f

qk
, ∀k ≥ 0, (36)

‖xk − x∗‖ ≤ C

√

f(x0) − min f

q
k−1

2

∀k ≥ 1, (37)

where

q = 1 +
2aγR
b2

and C =
1√
a



1 +
1

ab−2γR
√

1 + 1
2ab−2γR



 .

Remark 26 (Complexity and convergence rates for ISTA) (a) While it was known that ISTA has
a linear asymptotic convergence rate, see [42] in which a transparent explanation is provided, best known
complexity bounds were of the type O( 1k ), see [11, 33]. Much like in the spirit of [42], we show here how
geometry impacts complexity –through error bounds/KL inequality– providing thus complementary results
to what is usually done in this field.
(b) The estimate of γR given in Section 3.2.1 is far from being optimal and more work remains to be
done to obtain acceptable/tight bounds. Observe however that the role of an optimal γR is absolutely
crucial when it comes to complexity (see (36)): a good “conditioning” (γR not too small) provides fast
convergence, while a bad one11 comes with “bad complexity”.
(c) Assuming that the forward-backward method is performed with a constant stepsize d/L as in Remark 24,
the value q appearing in the complexity bounds given by Theorem 25 becomes

q = 1 +
d(2 − d)

(d+ 1)2L
γR.

10Recall that r0 = f(x0).
11Bad conditioning are produced by flat objective functions yielding thus small constants γR.
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This quantity is maximized when d = 1/2. In this case, one obtains the optimized estimate:

f(xk) − min f ≤ f(x0) − min f
(

1 + γR
3L

)k
, ∀k ≥ 0,

‖xk − x∗‖ ≤
√

2

3L



1 +
6L

γR

√

1 + 3L
γR





√

f(x0) − min f
(

1 + γR
3L

)
k−1

2

, ∀k ≥ 1.

6 Error bounds and KL inequalities for convex functions: additional

properties

In this concluding section we provide further theoretical perspectives that will help the reader to understand
the possibilities and the limitations of our general methodology. We give, in particular, a counterexample
to the full equivalence between the KL property and error bounds, and we provide a globalization result
for desingularizing functions.

6.1 KL inequality and length of subgradient curves

This subsection essentially recalls a characterization result from [18] on the equivalence between the KL
inequality and the existence of a uniform bound for the length of subgradient trajectories verifying a subgra-
dient differential inclusion. Due to the contraction properties of the semi-flow, the result is actually stronger
than the nonconvex results provided in [18]. For the reader’s convenience, we provide a self-contained proof.

Given x ∈ dom ∂f , we denote by χx : [0,∞) → H the unique solution of the differential inclusion

ẏ(t) ∈ −∂f(y(t)), almost everywhere on (0,+∞),

with initial condition y(0) = x.

The following result provides an estimation on the length of subgradient trajectories, when f satisfies
the KL inequality. Given x ∈ dom f , and 0 ≤ t < s, write

length(χx, t, s) =

∫ s

t
‖χ̇x(τ)‖ dτ.

Recall that S = argmin f and that min f = 0.

Theorem 27 (KL and uniform bounds of subgradient curves) Let x̄ ∈ S, ρ > 0 and ϕ ∈ K(0, r0).
The following are equivalent:

i) For each y ∈ B(x̄, ρ) ∩ [0 < f < r0], we have

ϕ′(f(y))‖∂0f(y)‖ ≥ 1.

ii) For each x ∈ B(x̄, ρ) ∩ [0 < f ≤ r0] and 0 ≤ t < s, we have

length(χx, t, s) ≤ ϕ
(

f (χx (t))
)

− ϕ
(

f (χx (s))
)

.

Moreover, under these conditions, χx(t) converges strongly to a minimizer as t→ ∞.
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Proof. Take x ∈ B(x̄, ρ) ∩ [0 < f ≤ r0] and 0 ≤ t < s. First observe that

ϕ(f(χx(t))) − ϕ(f(χx(s))) =

∫ t

s

d

dτ
ϕ(f(χx(τ))) dτ =

∫ s

t
ϕ′(f(χx(τ)))‖χ̇x(τ)‖2 dτ.

Since χx(τ) ∈ dom ∂f ∩B(x̄, ρ) ∩ [0 < f < r0] for all τ > 0 (see Theorem 1) and −χ̇x(τ) ∈ ∂f(χx(τ)) for
almost every τ > 0, it follows that

1 ≤ ‖∂0(ϕ ◦ f)(χx(τ))‖ ≤ ϕ′(f(χx(τ)))‖χ̇x(τ)‖
for all such τ . Multiplying by ‖χ̇x(τ)‖ and integrating from t to s, we deduce that

length(χx, t, s) ≤ ϕ(f(χx(t))) − ϕ(f(χx(s))).

Conversely, take y ∈ dom∂f ∩B(x̄, ρ) ∩ [0 < f < r0] (if y is not in dom ∂f the result is obvious). For each
h > 0 we have

1

h

∫ h

0
‖χ̇y(τ)‖ dτ ≤ −ϕ(f(χy(h)) − ϕ(f(y))

h
.

As h→ 0, we obtain

‖χ̇y(0+)‖ ≤ ϕ′(f(y))‖χ̇y(0+)‖2 = ϕ′(f(y)) ‖∂0f(y)‖ ‖χ̇y(0+)‖,
and so

‖∂0(ϕ ◦ f)(y)‖ ≥ 1.

Finally, since ‖χx(t) − χx(s)‖ ≤ length(χx, t, s), we deduce from ii) that the function t 7→ χx(t) has the
Cauchy property as t→ ∞. �

6.2 A counterexample: error bounds do not imply KL

In [18, Section 4.3], the authors build a twice continuously differentiable convex function f : R2 → R which
does not have the KL property, and such that S = D(0, 1) (the closed unit disk of radius 1). This implies
that f does not satisfy the KL inequality whatever choice of desingularizing function ϕ is made.

Let us show that this function has a smooth error bound. First note that, since S is compact, f is
coercive (see, for instance, [60]). Define ψ : [0,∞) → R+ by

ψ(s) = min{f(x) : ‖x‖ ≥ 1 + s}.
This function is increasing (recall that f is convex) and it satisfies

ψ(0) = 0, (38)

ψ(s) > 0 for s > 0, (39)

f(x) ≥ ψ(dist(x, S)) for all x ∈ [r < f ] (40)

Let ψ̂ be the convex envelope of ψ, that is the greatest convex function lying below ψ. One easily verifies
that ψ̂ enjoys the same properties (38), (39), (40). The Moreau envelope of the latter:

R+ ∋ s→ Ψ(s) := ψ̂1(s) = inf{ψ̂(ς) + 1
2 (s− ς)2 : ς ∈ R},

is convex, has 0 as a unique minimizer, is continuously differentiable with positive derivative on R \ {0},
and satisfies Ψ ≤ ψ1 (see [7]). Whence,

f(x) ≥ Ψ(dist(x, S)) for all x ∈ [0 < f < r].

We have proved the following:
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Theorem 28 (Error bounds do not imply KL) There exists a C2 convex function f : R2 → R, which
does not satisfy the KL inequality, but has an error bound with a smooth convex residual function.

Remark 29 (Hölderian error bounds without convexity) Hölderian error bounds do not necessari-
ly imply  Lojasiewicz inequality − not even the KL inequality − for nonconvex functions. The reason is
elementary and consists simply in considering a function with non isolated critical values. Given r ≥ 2,
consider the Cr−1 function

f(x) =

{

x2r
(

2 + cos
(

1
x

))

if x 6= 0,

0 if x = 0.

It satisfies f ′(0) = 0 and f ′(x) = 4rx2r−1 + 2rx2r−1 cos
(

1
x

)

+ x2r−2 sin
(

1
x

)

if x 6= 0. Moreover, we have
f(x) ≥ x2r = dist(x, S)2r for all x ∈ R. On the other hand, picking yk = 1

2kπ and zk = 1
2kπ+3π

2

, we see that

f ′(yk) = 6r
(2kπ)2r−1 > 0 and f ′(zk) = 1

(2kπ+3π
2
)2r−2

(

4r
2kπ+3π

2

− 1
)

< 0 for all sufficiently large k. Therefore,

there is a positive sequence (xk)k∈N converging to zero with f ′(xk) = 0 for all k. Hence, f cannot satisfy
the KL inequality at 0.

6.3 From semi-local inequalities to global inequalities

We derive here a globalization result for KL inequalities that strongly supports the Lipschitz continuity
assumption for the derivative of the inverse of a desingularizing function, an assumption that was essential
to derive Theorem 16. The ideas behind the proof are inspired by [18].

Proposition 30 (Globalization of KL inequality – convex case) Let f : H → (−∞,+∞] be a proper
lower semicontinuous convex function such that argmin f 6= ∅ and min f = 0. Assume also that f has the
KL property on [0 < f < r0] with desingularizing function ϕ ∈ K(0, r0). Then, given r1 ∈ (0, r0), the
function given by

φ(r) =

{

ϕ(r) when r ≤ r1
ϕ(r1) + (r − r1)ϕ

′(r1) when r ≥ r1

is desingularising for f on all of H.

Proof. Let x be such that f(x) > r1. We would like to establish that ‖∂0f(x)‖φ′(f(x)) ≥ 1, thus
we may assume, with no loss of generality, that ‖∂0f(x)‖ is finite. If there is y ∈ [f = r1] such that
‖∂0f(y)‖ ≤ ‖∂0f(x)‖, then

‖∂0f(x)‖φ′(f(x)) = ‖∂0f(x)‖ϕ′(r1) ≥ ‖∂0f(y)‖ϕ′(r1) = ‖∂0f(y)‖ϕ′(f(y)) ≥ 1.

To show that such a y exists, we use the semiflow of ∂f . Consider the curve t → χx(t) and observe
that there exists t1 > 0 such that f(χx(t1)) = r1, because f(χx(0)) = f(x) > r1, f(χx(t)) → inf f < r1
and f(χx(·)) is continuous. From [23, Theorem 3.1 (6)], we know also that ‖∂f0(χx(t))‖ is nonincreasing.
As a consequence, if we set y = χx(t1), we obtained the desired point and the final conclusion. �

One deduces easily from the above the following result, which is close to an observation already made in
[18]. For an insight into the notion of definability of functions, a prominent example being semi-algebraicity,
one is referred to [30]. Recall that coercivity of a proper lower-semicontinuous convex function defined on
a finite dimensional space is equivalent to the fact that argmin f is nonempty and compact.

Theorem 31 (Global KL inequalities for coercive definable convex functions) Let f : Rn → R

be proper, lower-semicontinuous, convex, definable, and such that argmin f is nonempty and compact.
Then, f has the KL property on R

n.
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Proof. Take r0 > 0 and use [19] to obtain ϕ ∈ K(0, r0) so that f is KL on [min f < f < min f + r0].
Then use the previous proposition to extend ϕ on (0,+∞). �

Remark 32 (Complexity of descent methods for definable coercive convex function) The pre-
vious result implies that there always exists a global measure of complexity for first-order descent methods
(H1), (H2) of definable coercive convex lower-semicontinuous functions. This complexity bound is en-
coded in majorizing sequences computable from a single definable function and from the initial data.
These majorizing sequences are of course defined, as in Theorem 16, by

αk+1 = argmin

{

ϕ−1(u) +
1

2ζ
(u− αk)2 : u ≥ 0

}

, α0 = ϕ(r0).

or equivalently
αk+1 = proxζϕ−1(αk), α0 = ϕ(r0),

where ζ is a parameter of the chosen first-order method.
It is a very theoretical result yet conceptually important since it shows that the understanding and the

research of complexity is guaranteed by the existence of a global KL inequality and our general methodology.

7 Conclusions

In this paper, we devised a general methodology to estimate the complexity for descent methods which
are commonly used to solve convex optimization problems: error bounds can be employed to obtain
desingularizing functions in the sense of  Lojasiewicz, which, in turn, provide the complexity estimates.
These techniques are applied to obtain new complexity results for ISTA in compressed sensing, as well as
barycentric and alternating projection method for convex feasibility.

While this work was in its final phase, we discovered the prepublication [40] in which complementary
ideas are used to develop error bounds for parametric polynomial systems and to analyze the convergence
rate of some first order methods. Numerous interconnections and roads must be investigated at the light
of these new discoveries, and we hope to do so in our future research.
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PhD Thesis, Université Joseph Fourier Grenoble, France, (1969).

[6] Bauschke H.H., Borwein, J.M., On projection algorithms for solving convex feasibility problems, SIAM
Review 38, no. 3, 367–426 (1996).

[7] Bauschke H.H., and Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, New York, (2011).

[8] Auslender A., Crouzeix, J.-P., Global regularity theorems, Math. Oper. Res. 13, 243–253 (1988).

[9] Baillon J.-B., Combettes P.L., Cominetti R., There is no variational characterization of the cycles in
the method of periodic projections, Journal of Functional Analysis, 262, no. 1, 400–408 (2012).

[10] Beck A., Shtern S.: Linearly Convergent Away-Step Conditional Gradient for Non-strongly Convex
Functions, http://arxiv.org/abs/1504.05002.

[11] Beck A., Teboulle M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM Journal on Imaging Science, 2, 183–202 (2008).

[12] Beck A., Teboulle M.: Convergence rate analysis and error bounds for projection algorithms in convex
feasibility problem, Optimization Methods and Software, 18, no. 4, 377–394 (2003).

[13] Bégout P., Bolte J., Jendoubi M.-A: On damped second-order gradient systems, J. Differential Equa-
tions 259, no 7, 3115–3143 (2015).

[14] Belousov E.G, Klatte D.: A Frank-Wolfe type theorem for convex polynomial programs, Comput.
Optim. Appl. 22, 37–48 (2002).

[15] Bochnak J., Coste M., Roy M.-F.: Real Algebraic Geometry, Springer, 1998.

[16] Bolte J.: Sur quelques principes de convergence en Optimisation. Habilitation à diriger des recherches,
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